-
sdr.plot.pdf(rv: scipy.stats.rv_continuous, threshold: float | None =
None, annotate: 'p_d' | 'p_fa' | 'p_m' | 'p_c' | None =None, x: NDArray[float64] | None =None, points: int =1001, p: float =1e-06, ax: plt.Axes | None =None, **kwargs) Plots the probability density function (PDF) of a statistical distribution.
- Parameters:¶
- rv: scipy.stats.rv_continuous¶
The statistical distribution.
- threshold: float | None =
None¶ The detection threshold \(\gamma\).
- annotate: 'p_d' | 'p_fa' | 'p_m' | 'p_c' | None =
None¶ Indicates whether to shade and annotate the plot with the probability of detection \(P_d\), false alarm \(P_{fa}\), missed detection \(P_m\), or correct rejection \(P_c\).
- x: NDArray[float64] | None =
None¶ The x-axis values to use for the plot. If not provided, it will be generated automatically.
- points: int =
1001¶ The number of points to use for the x-axis.
- p: float =
1e-06¶ The probability of the tail to plot. The smaller the value, the longer the x-axis.
- ax: plt.Axes | None =
None¶ The axis to plot on. If
None, the current axis is used.- **kwargs¶
Additional keyword arguments to pass to
matplotlib.pyplot.plot().
See also
Example¶
In [1]: rv = scipy.stats.rayleigh(scale=1); \ ...: threshold = 2 ...: In [2]: plt.figure(); \ ...: sdr.plot.pdf(rv, threshold=threshold, annotate="p_d"); ...: