Phase-locked loops¶
import numpy as np
import matplotlib.pyplot as plt
import sdr
%config InlineBackend.print_figure_kwargs = {"facecolor" : "w"}
# %matplotlib widget
Design a proportional-plus-integrator (PPI) loop filter¶
A 2nd order, proportional-plus-integrator loop filter has the following configuration.
+----+
+-->| K1 |-------------------+
| +----+ |
x[n] --+ @--> y[n]
| +----+ |
+-->| K2 |--@-------------+--+
+----+ ^ |
| +------+ |
+--| z^-1 |<--+
+------+
x[n] = Input signal
y[n] = Output signal
K1 = Proportional gain
K2 = Integral gain
z^-1 = Unit delay
@ = Adder
The transfer function of the loop filter is
\[H(z) = K_1 + K_2 \frac{ 1 }{ 1 - z^{-1}} = \frac{(K_1 + K_2) - K_1 z^{-1}}{1 - z^{-1}} .\]
These loop filters are implemented in sdr.LoopFilter
.
loop_filter = sdr.LoopFilter(0.05, 1)
print(loop_filter)
<sdr.LoopFilter object at 0x000002276D2BCC08>
plt.figure(figsize=(10, 5))
sdr.plot.magnitude_response(loop_filter.iir, x_axis="log", decades=6)
plt.show()
Implement a PLL in the phase domain¶
This section implements Example C.2.1 from Digital Communications: A Discrete-Time Approach.
N = 75 # samples
theta_0 = 2 * np.pi / 10 # radians/sample
x = theta_0 * np.arange(N) + np.pi # Input phase signal, radians
y = np.zeros(x.size + 1) # Output phase signal, radians
phase_error = np.zeros(x.size) # Measured phase error, radians
freq_estimate = np.zeros(x.size) # Estimated frequency, radians/sample
# Create a proportional-plus-integrator (PPI) loop filter with a normalized
# noise bandwidth of 0.05 and a damping factor of 1 (critically damped)
loop_filter = sdr.LoopFilter(0.05, 1)
# Create a numerically controlled oscillator (NCO) with NCO gain of 1
# and a constant phase accumulation of theta_0 radians/sample
nco = sdr.NCO(1, theta_0)
for i in range(N):
# Phase error detector (PED)
phase_error[i] = x[i] - y[i]
# Compute the frequency estimate
freq_estimate[i] = loop_filter(phase_error[i])
# Process the variable phase increment through the NCO
y[i + 1] = nco(freq_estimate[i])
plt.figure(figsize=(10, 6))
plt.subplot(2, 1, 1)
plt.plot(x, label="Input phase")
plt.plot(y, label="Output phase")
plt.grid(which="both", linestyle="--")
plt.legend()
plt.xlabel("Sample")
plt.ylabel("Phase (radians)")
plt.title("Input and output phase signals")
plt.subplot(2, 1, 2)
plt.plot(phase_error)
plt.grid(which="both", linestyle="--")
plt.xlabel("Sample")
plt.ylabel("Phase (radians)")
plt.title("Phase error between input and output phase signals")
plt.suptitle("Figure C.2.5 from Digital Communications: A Discrete-Time Approach")
plt.tight_layout()
plt.show()
Implement a PLL in the time domain¶
N = 75 # samples
theta_0 = 2 * np.pi / 10 # radians/sample
x = np.exp(1j * (theta_0 * np.arange(N) + np.pi)) # Input signal
y = np.ones(x.size + 1, dtype=complex) # Output signal
phase_error = np.zeros(x.size)
freq_estimate = np.zeros(x.size)
# Create a proportional-plus-integrator (PPI) loop filter with a normalized
# noise bandwidth of 0.05 and a damping factor of 1 (critically damped)
loop_filter = sdr.LoopFilter(0.05, 1)
# Create a direct digital synthesizer (DDS) with NCO gain of 1
# and a constant phase accumulation of theta_0 radians/sample
dds = sdr.DDS(1, theta_0)
for i in range(N):
# Phase error detector (PED)
phase_error[i] = np.angle(x[i] * y[i].conj())
# Compute the frequency estimate
freq_estimate[i] = loop_filter(phase_error[i])
# Process the variable phase increment through the DDS
y[i + 1] = dds(freq_estimate[i])
plt.figure(figsize=(10, 8))
plt.subplot(3, 1, 1)
plt.plot(x.real, label="Input")
plt.plot(y.real, label="Output")
plt.grid(which="both", linestyle="--")
plt.legend()
plt.xlabel("Sample")
plt.ylabel("Amplitude")
plt.title("Input and output signals (real part only)")
plt.subplot(3, 1, 2)
plt.plot(phase_error)
plt.grid(which="both", linestyle="--")
plt.xlabel("Sample")
plt.ylabel("Phase (radians)")
plt.title("Phase error between input and output phase signals")
plt.subplot(3, 1, 3)
plt.plot(np.unwrap(np.angle(x)), label="Input")
plt.plot(np.unwrap(np.angle(y)), label="Output")
plt.grid(which="both", linestyle="--")
plt.legend()
plt.xlabel("Sample")
plt.ylabel("Phase (radians)")
plt.title("Input and output signals (phase)")
plt.suptitle("Figure C.2.5 from Digital Communications: A Discrete-Time Approach")
plt.tight_layout()
plt.show()
Analyze PLL closed-loop performance¶
A closed-loop PLL has the following configuration.
bb[n]
+---+ +-----+ +----+
x[n] -->| X |--->| PED |--->| LF |---+
+---+ +-----+ +----+ |
^ |
| +---------+ +-----+ |
lo[n] +--| e^(-j.) |<--| NCO |<--+
+---------+ +-----+
x[n] = Input signal
lo[n] = Local oscillator signal
bb[n] = Baseband signal
PED = Phase error detector
LF = Loop filter
NCO = Numerically-controlled oscillator
The closed-loop transfer function of the PLL is
\[
H_{PLL}(z) = \frac{K_p K_0 (K_1 + K_2) z^{-1} - K_p K_0 K_1 z^{-2}}
{1 - 2 (1 - \frac{1}{2} K_p K_0 (K_1 + K_2) z^{-1} + (1 - K_p K_0 K_1) z^{-2} } .
\]
The analysis of the performance of this closed-loop system is available in sdr.ClosedLoopPLL
.
Compare step and frequency response across \(\zeta\)¶
plt.figure(figsize=(10, 5))
for zeta in [1 / 2, 1 / np.sqrt(2), 1, 2]:
pll = sdr.ClosedLoopPLL(0.01, zeta)
sdr.plot.step_response(pll.iir, N=500, label=rf"$\zeta = {zeta}$")
plt.legend()
plt.title("Step response of the closed-loop PLL across damping factor")
plt.show()
plt.figure(figsize=(10, 5))
for zeta in [1 / 2, 1 / np.sqrt(2), 1, 2]:
pll = sdr.ClosedLoopPLL(0.01, zeta)
sdr.plot.magnitude_response(pll.iir, sample_rate=2 * np.pi / pll.omega_n, x_axis="log", label=rf"$\zeta = {zeta}$")
plt.legend()
plt.xlim([10**-2, 10**2])
plt.ylim([-25, 5])
plt.xlabel(r"Normalized Frequency ($\omega / \omega_n$)")
plt.title("Frequency response of the closed-loop PLL across damping factor")
plt.show()
Compare step and frequency response across \(B_n T\)¶
plt.figure(figsize=(10, 5))
for BnT in [0.001, 0.005, 0.01, 0.05, 0.1]:
pll = sdr.ClosedLoopPLL(BnT, 1)
sdr.plot.step_response(pll.iir, N=500, label=f"$B_nT = {BnT}$")
plt.legend()
plt.title("Step response of the closed-loop PLL across normalized noise bandwidth")
plt.show()
plt.figure(figsize=(10, 5))
for BnT in [0.001, 0.005, 0.01, 0.05, 0.1]:
pll = sdr.ClosedLoopPLL(BnT, 1)
sdr.plot.magnitude_response(pll.iir, x_axis="log", label=f"$B_nT = {BnT}$")
plt.legend()
plt.ylim([-25, 5])
plt.title("Frequency response of the closed-loop PLL across normalized noise bandwidth")
plt.show()
Compare lock time across \(B_n T\)¶
freq = np.linspace(0, 0.0005, 100)
plt.figure(figsize=(10, 5))
for BnT in [0.01, 0.0125, 0.015, 0.0175, 0.02]:
pll = sdr.ClosedLoopPLL(BnT, 1)
t_lock = pll.lock_time(freq)
plt.plot(freq, t_lock, label=f"$B_nT = {BnT}$")
plt.grid(which="both", linestyle="--")
plt.legend()
plt.xlabel("Normalized frequency offset ($f / f_s$)")
plt.ylabel("Lock time (samples)")
plt.title("Lock time of the closed-loop PLL across input signal frequency offset")
plt.show()
Last update:
Aug 16, 2023