- class sdr.PSK(sdr.LinearModulation)
Implements phase-shift keying (PSK) modulation and demodulation.
Notes¶
Phase-shift keying (PSK) is a linear phase modulation scheme that encodes information by modulating the phase of a carrier sinusoid. The modulation order \(M = 2^k\) is a power of 2 and indicates the number of phases used. The input bit stream is taken \(k\) bits at a time to create decimal symbols \(s[k] \in \{0, \dots, M-1\}\). These decimal symbols \(s[k]\) are then mapped to complex symbols \(a[k] \in \mathbb{C}\) by the equation
\[a[k] = \exp \left[ j\left(\frac{2\pi}{M}s[k] + \phi\right) \right] .\]Examples¶
Create a QPSK modem whose constellation has a 45° phase offset.
In [1]: qpsk = sdr.PSK(4, phase_offset=45, pulse_shape="srrc"); qpsk Out[1]: sdr.PSK(4, phase_offset=45, symbol_labels='gray') In [2]: plt.figure(figsize=(8, 4)); \ ...: sdr.plot.symbol_map(qpsk); ...:
Generate a random bit stream, convert to 2-bit symbols, and map to complex symbols.
In [3]: bits = np.random.randint(0, 2, 1000); bits[0:8] Out[3]: array([0, 1, 1, 0, 1, 1, 1, 1]) In [4]: symbols = sdr.pack(bits, qpsk.bps); symbols[0:4] Out[4]: array([1, 2, 3, 3], dtype=uint8) In [5]: complex_symbols = qpsk.map_symbols(symbols); complex_symbols[0:4] Out[5]: array([-0.70710678+0.70710678j, 0.70710678-0.70710678j, -0.70710678-0.70710678j, -0.70710678-0.70710678j]) In [6]: plt.figure(figsize=(8, 4)); \ ...: sdr.plot.constellation(complex_symbols, linestyle="-"); ...:
Modulate and pulse shape the symbols to a complex baseband signal.
In [7]: tx_samples = qpsk.modulate(symbols) In [8]: plt.figure(figsize=(8, 4)); \ ...: sdr.plot.time_domain(tx_samples[0:50*qpsk.sps], sample_rate=qpsk.sps); ...: In [9]: plt.figure(figsize=(8, 4)); \ ...: sdr.plot.eye(tx_samples[5*qpsk.sps : -5*qpsk.sps], qpsk.sps); ...:
Add AWGN noise such that \(E_b/N_0 = 20\) dB.
In [10]: ebn0 = 20; \ ....: snr = sdr.ebn0_to_snr(ebn0, bps=qpsk.bps, sps=qpsk.sps); \ ....: rx_samples = sdr.awgn(tx_samples, snr=snr) ....: In [11]: plt.figure(figsize=(8, 4)); \ ....: sdr.plot.time_domain(rx_samples[0:50*qpsk.sps], sample_rate=qpsk.sps); ....:
Matched filter and demodulate.
In [12]: rx_symbols, rx_complex_symbols = qpsk.demodulate(rx_samples) # The symbol decisions are error-free In [13]: np.array_equal(symbols, rx_symbols) Out[13]: True In [14]: plt.figure(figsize=(8, 4)); \ ....: sdr.plot.constellation(rx_complex_symbols); ....:
See the Phase-shift keying example.
Constructors¶
-
PSK(order: int, phase_offset: float =
0.0
, ...) Creates a new PSK object.
String representation¶
Methods¶
-
ber(ebn0: ArrayLike, diff_encoded: bool =
False
) NDArray[float_] Computes the bit error rate (BER) at the provided \(E_b/N_0\) values.
-
ser(esn0: ArrayLike, diff_encoded: bool =
False
) NDArray[float_] Computes the symbol error rate (SER) at the provided \(E_s/N_0\) values.
- map_symbols(s: ArrayLike) NDArray[complex_]
Converts the decimal symbols \(s[k]\) to complex symbols \(a[k]\).
- decide_symbols(a_hat: ArrayLike) NDArray[int_]
Converts the received complex symbols \(\hat{a}[k]\) into decimal symbol decisions \(\hat{s}[k]\) using maximum-likelihood estimation (MLE).
- modulate(s: ArrayLike) NDArray[complex_]
Modulates the decimal symbols \(s[k]\) into pulse-shaped complex samples \(x[n]\).
- demodulate(x_hat) tuple[NDArray[int_], NDArray[complex_]]
Demodulates the pulse-shaped complex samples \(\hat{x}[n]\) into decimal symbol decisions \(\hat{s}[k]\) using matched filtering and maximum-likelihood estimation.
Properties¶
- property phase_offset : float
The phase offset \(\phi\) in degrees.
- property symbol_map : NDArray[np.complex_]
The symbol map \(\{0, \dots, M-1\} \mapsto \mathbb{C}\). This maps decimal symbols from \(0\) to \(M-1\) to complex symbols.
- property pulse_shape : NDArray[np.float_]
The pulse shape \(h[n]\) of the modulated signal.
- property tx_filter : Interpolator
The transmit interpolating pulse shaping filter. The filter coefficients are the pulse shape \(h[n]\).
- property rx_filter : Decimator
The receive decimating matched filter. The filter coefficients are matched to the pulse shape \(h[-n]^*\).
-
PSK(order: int, phase_offset: float =