- class sdr.Interpolator(sdr.FIR)
Implements a polyphase interpolating FIR filter.
Notes¶
The polyphase interpolating filter is equivalent to first upsampling the input signal \(x[n]\) by \(r\) (by inserting \(r-1\) zeros between each sample) and then filtering the upsampled signal with the prototype FIR filter with feedforward coefficients \(h_{i}\).
Instead, the polyphase interpolating filter first decomposes the prototype FIR filter into \(r\) polyphase filters with feedforward coefficients \(h_{i, j}\). The polyphase filters are then applied to the input signal \(x[n]\) in parallel. The output of the polyphase filters are then commutated to produce the output signal \(y[n]\). This prevents the need to multiply with zeros in the upsampled input, as is needed in the first case.
+------------------------+ +-->| h[0], h[2], h[4], h[6] |--> ..., y[2], y[0] | +------------------------+ ..., x[1], x[0] --+ | +------------------------+ +-->| h[1], h[3], h[5], 0 |--> ..., y[3], y[1] +------------------------+ Input Hold Output Commutator (top-to-bottom) x[n] = Input signal with sample rate fs y[n] = Output signal with sample rate fs * r h[n] = Prototype FIR filter
The polyphase feedforward taps \(h_{i, j}\) are related to the prototype feedforward taps \(h_i\) by
\[h_{i, j} = h_{i + j r} .\]Examples¶
Create an input signal to interpolate.
In [1]: x = np.cos(np.pi / 4 * np.arange(40))
Create a polyphase filter that interpolates by 7 using the Kaiser window method.
In [2]: fir = sdr.Interpolator(7); fir Out[2]: sdr.Interpolator(7, 'kaiser', streaming=False) In [3]: y = fir(x) In [4]: plt.figure(figsize=(8, 4)); \ ...: sdr.plot.time_domain(x, marker="o", label="Input"); \ ...: sdr.plot.time_domain(y, sample_rate=fir.rate, marker=".", label="Interpolated"); \ ...: plt.title("Interpolation by 7 with the Kaiser window method"); \ ...: plt.tight_layout(); ...:
Create a streaming polyphase filter that interpolates by 7 using the Kaiser window method. This filter preserves state between calls.
In [5]: fir = sdr.Interpolator(7, streaming=True); fir Out[5]: sdr.Interpolator(7, 'kaiser', streaming=True) In [6]: y1 = fir(x[0:10]); \ ...: y2 = fir(x[10:20]); \ ...: y3 = fir(x[20:30]); \ ...: y4 = fir(x[30:40]); \ ...: y5 = fir.flush() ...: In [7]: plt.figure(figsize=(8, 4)); \ ...: sdr.plot.time_domain(x, marker="o", label="Input"); \ ...: sdr.plot.time_domain(y1, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 0, marker=".", label="Interpolated $y_1[n]$"); \ ...: sdr.plot.time_domain(y2, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 10, marker=".", label="Interpolated $y_2[n]$"); \ ...: sdr.plot.time_domain(y3, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 20, marker=".", label="Interpolated $y_3[n]$"); \ ...: sdr.plot.time_domain(y4, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 30, marker=".", label="Interpolated $y_4[n]$"); \ ...: sdr.plot.time_domain(y5, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 40, marker=".", label="Interpolated $y_5[n]$"); \ ...: plt.title("Streaming interpolation by 7 with the Kaiser window method"); \ ...: plt.tight_layout(); ...:
Create a polyphase filter that interpolates by 7 using linear method.
In [8]: fir = sdr.Interpolator(7, "linear"); fir Out[8]: sdr.Interpolator(7, 'linear', streaming=False) In [9]: y = fir(x) In [10]: plt.figure(figsize=(8, 4)); \ ....: sdr.plot.time_domain(x, marker="o", label="Input"); \ ....: sdr.plot.time_domain(y, sample_rate=fir.rate, marker=".", label="Interpolated"); \ ....: plt.title("Interpolation by 7 with the linear method"); \ ....: plt.tight_layout(); ....:
Create a polyphase filter that interpolates by 7 using the zero-order hold method. It is recommended to use the
"full"
convolution mode. This way the first upsampled symbol has \(r\) samples.In [11]: fir = sdr.Interpolator(7, "zoh"); fir Out[11]: sdr.Interpolator(7, 'zoh', streaming=False) In [12]: y = fir(x, mode="full") In [13]: plt.figure(figsize=(8, 4)); \ ....: sdr.plot.time_domain(x, marker="o", label="Input"); \ ....: sdr.plot.time_domain(y, sample_rate=fir.rate, offset=-fir.delay/fir.rate, marker=".", label="Interpolated"); \ ....: plt.title("Interpolation by 7 with the zero-order hold method"); \ ....: plt.tight_layout(); ....:
Constructors¶
- Interpolator(rate: int, ...)
Creates a polyphase FIR interpolating filter.
Special methods¶
-
__call__(x: ArrayLike, mode: 'rate' | 'full' =
'rate'
) NDArray Interpolates and filters the input signal \(x[n]\) with the polyphase FIR filter.
String representation¶
Streaming mode only¶
- reset()
Resets the filter state. Only useful when using streaming mode.
- flush() NDArray
Flushes the filter state by passing zeros through the filter. Only useful when using streaming mode.
- property state : NDArray
The filter state consisting of the previous \(N\) inputs.
Methods¶
-
impulse_response(N: int | None =
None
) NDArray Returns the impulse response \(h[n]\) of the FIR filter. The impulse response \(h[n]\) is the filter output when the input is an impulse \(\delta[n]\).
-
step_response(N: int | None =
None
) NDArray Returns the step response \(s[n]\) of the FIR filter. The step response \(s[n]\) is the filter output when the input is a unit step \(u[n]\).
- frequency_response(...) tuple[NDArray, NDArray]
Returns the frequency response \(H(\omega)\) of the FIR filter.
- frequency_response_log(...) tuple[NDArray, NDArray]
Returns the frequency response \(H(\omega)\) of the FIR filter on a logarithmic frequency axis.
Properties¶
- property method : 'kaiser' | 'linear' | 'linear-matlab' | 'zoh' | 'custom'
The method used to design the multirate filter.
- property taps : NDArray
The prototype feedforward taps \(h_i\).
- property polyphase_taps : NDArray
The polyphase feedforward taps \(h_{i, j}\).
- property delay : int
The delay of FIR filter in samples. The delay indicates the output sample index that corresponds to the first input sample.