-
sdr.FarrowResampler.clock_outputs(x: ArrayLike, rate: ArrayLike, n_outputs: int, mode: 'rate' | 'full' =
'rate'
) tuple[TypeAliasForwardRef('~numpy.typing.NDArray'), int] Resamples the input signal \(x[n]\) by the given arbitrary rate \(r\).
\[x[n] = x(n T_s)\]\[y[n] = x(n T_s / r)\]- Parameters:¶
- x: ArrayLike¶
The input signal \(x[n] = x(n T_s)\) with length \(L\).
- rate: ArrayLike¶
The resampling rate \(r\). The rate can either be a scalar or an array of the same size as the input signal \(x[n]\).
- n_outputs: int¶
The requested number of output samples in \(y[n]\).
- mode: 'rate' | 'full' =
'rate'
¶ The convolution mode.
"rate"
: The output signal \(y[k]\) is aligned with the input signal, such that \(y[n] = x[n / r]\)."full"
: The full convolution is performed, and the filter delay \(D\) is observed, such that \(y[n] = x[(n - D) / r]\).
- Returns:¶
The resampled signal \(y[n]\).
The number of processed input samples
n_inputs
.
Examples¶
See the Farrow arbitrary resampler example.