- 
sdr.min_snr(p_d: ArrayLike, p_fa: ArrayLike, detector: 'coherent' | 'linear' | 'square-law' = 
'square-law', complex: bool =True, n_c: int =1, n_nc: int | None =None) NDArray[float64] Computes the minimum input signal-to-noise ratio (SNR) required to achieve the desired probability of detection \(P_d\).
- Parameters:¶
 - p_d: ArrayLike¶
 The desired probability of detection \(P_d\) in \((0, 1)\).
- p_fa: ArrayLike¶
 The probability of false alarm \(P_{fa}\) in \((0, 1)\).
- detector:   'coherent'   |   'linear'   |   'square-law'   =   
'square-law'¶ The detector type.
"coherent": A coherent detector,\[T(x) = \mathrm{Re}\left\{\sum_{i=0}^{N_c-1} x[n-i]\right\} .\]"linear": A linear detector,\[T(x) = \sum_{j=0}^{N_{nc}-1}\left|\sum_{i=0}^{N_c-1} x[n-i-jN_c]\right| .\]"square-law": A square-law detector,\[T(x) = \sum_{j=0}^{N_{nc}-1}\left|\sum_{i=0}^{N_c-1} x[n-i-jN_c]\right|^2 .\]
- complex:   bool   =   
True¶ Indicates whether the input signal is real or complex. This affects how the SNR is converted to noise variance.
- n_c:   int   =   
1¶ The number of samples to coherently integrate \(N_c\).
- n_nc:   int   |   None   =   
None¶ The number of samples to non-coherently integrate \(N_{nc}\). Non-coherent integration is only allowable for linear and square-law detectors.
- Returns:¶
 The minimum signal-to-noise ratio (SNR) required to achieve the desired \(P_d\).
See also
Examples¶
Compute the minimum required SNR to achieve \(P_d = 0.9\) and \(P_{fa} = 10^{-6}\) with a square-law detector.
In [1]: sdr.min_snr(0.9, 1e-6, detector="square-law") Out[1]: 13.183490056794499Now suppose the signal is non-coherently integrated \(N_{nc} = 10\) times. Notice the minimum required SNR decreases, but by less than 10 dB. This is because non-coherent integration is less efficient than coherent integration.
In [2]: sdr.min_snr(0.9, 1e-6, detector="square-law", n_nc=10) Out[2]: 5.267486807285799Now suppose the signal is coherently integrated for \(N_c = 10\) samples before the square-law detector. Notice the SNR now decreases by exactly 10 dB.
In [3]: sdr.min_snr(0.9, 1e-6, detector="square-law", n_c=10, n_nc=10) Out[3]: -4.732513192714245Compare the theoretical minimum required SNR using linear and square-law detectors.
In [4]: p_d = 0.9; \ ...: p_fa = np.logspace(-12, -1, 21) ...: In [5]: plt.figure(); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=1, detector="square-law"), label=1); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=2, detector="square-law"), label=2); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=4, detector="square-law"), label=4); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=8, detector="square-law"), label=8); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=16, detector="square-law"), label=16); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=32, detector="square-law"), label=32); \ ...: plt.legend(title="$N_{nc}$"); \ ...: plt.xlabel("Probability of false alarm, $P_{fa}$"); \ ...: plt.ylabel("Minimum required input SNR (dB)"); \ ...: plt.title("Minimum required input SNR across non-coherent combinations for $P_d = 0.9$"); ...: