Sequences¶
Symbol-mapping sequences¶
- sdr.binary_code(n: int) NDArray[int_]
Generates a binary code of length \(2^n\).
Correlation sequences¶
- sdr.barker_code(length: int, ...) ndarray[Any, dtype[int64]]
- sdr.barker_code(length: int, output: 'field') FieldArray
- sdr.barker_code(length: int, output) ndarray[Any, dtype[float64]]
Returns the Barker code/sequence of length \(N\).
- sdr.hadamard_code(length: int, ...) ndarray[Any, dtype[int64]]
- sdr.hadamard_code(length: int, index: int, output) FieldArray
- sdr.hadamard_code(length: int, ...) ndarray[Any, dtype[float64]]
Returns the Hadamard code/sequence of length \(N\).
- sdr.walsh_code(length: int, ...) ndarray[Any, dtype[int64]]
- sdr.walsh_code(length: int, index: int, output) FieldArray
- sdr.walsh_code(length: int, ...) ndarray[Any, dtype[float64]]
Returns the Walsh code/sequence of length \(N\).
- sdr.kasami_code(length: int, ...) ndarray[Any, dtype[int64]]
- sdr.kasami_code(length: int, ...) FieldArray
- sdr.kasami_code(length: int, ...) ndarray[Any, dtype[float64]]
Returns the Kasami code/sequence of length \(N\).
- sdr.zadoff_chu_sequence(length: int, ...) NDArray[complex128]
Returns the root-\(u\) Zadoff-Chu sequence of length \(N\).
Linear recurrent sequences¶
- class sdr.FLFSR
Implements a Fibonacci linear-feedback shift register (LFSR).
- class sdr.GLFSR
Implements a Galois linear-feedback shift register (LFSR).
- sdr.berlekamp_massey(sequence: FieldArray, ...) Poly
- sdr.berlekamp_massey(sequence: FieldArray, output) FLFSR
- sdr.berlekamp_massey(sequence: FieldArray, output) GLFSR
Finds the minimal polynomial \(c(x)\) that produces the linear recurrent sequence \(y\).
Maximum-length sequences¶
- sdr.m_sequence(degree: int, ...) ndarray[Any, dtype[int64]]
- sdr.m_sequence(degree: int, ...) FieldArray
- sdr.m_sequence(degree: int, ...) ndarray[Any, dtype[float64]]
Generates a maximal-length sequence (m-sequence) from a Fibonacci linear feedback shift register (LFSR).
Last update:
May 27, 2024