-
sdr.plot.time_domain(x: ndarray[Any, dtype[_ScalarType_co]], *, sample_rate: float | None =
None
, centered: bool =False
, offset: float =0
, diff: 'color' | 'line' ='color'
, **kwargs) -
sdr.plot.time_domain(t: ndarray[Any, dtype[_ScalarType_co]], x: ndarray[Any, dtype[_ScalarType_co]], *, sample_rate: float | None =
None
, diff: 'color' | 'line' ='color'
, **kwargs) Plots a time-domain signal \(x[n]\).
- Parameters:¶
- t: ndarray[Any, dtype[_ScalarType_co]]
The time signal \(t[n]\). The units are assumed to be \(1/f_s\).
- x: ndarray[Any, dtype[_ScalarType_co]]¶
The time-domain signal \(x[n]\).
- sample_rate: float | None =
None
¶ The sample rate \(f_s\) of the signal in samples/s. If
None
, the x-axis will be labeled as “Samples”.- centered: bool =
False
¶ Indicates whether to center the x-axis about 0. This argument is mutually exclusive with
offset
.- offset: float =
0
¶ The x-axis offset to apply to the first sample. The units of the offset are \(1/f_s\). This argument is mutually exclusive with
centered
.- diff: 'color' | 'line' =
'color'
¶ Indicates how to differentiate the real and imaginary parts of a complex signal. If
"color"
, the real and imaginary parts will have different colors based on the current Matplotlib color cycle. If"line"
, the real part will have a solid line and the imaginary part will have a dashed line, and both lines will share the same color.- **kwargs¶
Additional keyword arguments to pass to
matplotlib.pyplot.plot()
.
Examples¶
Plot a square-root raised cosine (SRRC) pulse shape centered about 0.
In [1]: qpsk = sdr.PSK(4, phase_offset=45, sps=10, pulse_shape="srrc"); \ ...: pulse_shape = qpsk.pulse_shape ...: In [2]: plt.figure(); \ ...: sdr.plot.time_domain(pulse_shape, centered=True); \ ...: plt.title("SRRC pulse shape"); ...:
Plot an imaginary QPSK signal at 10 kS/s.
In [3]: symbols = np.random.randint(0, 4, 50); \ ...: x = qpsk.modulate(symbols) ...: In [4]: plt.figure(); \ ...: sdr.plot.time_domain(x, sample_rate=10e3); \ ...: plt.title("SRRC pulse-shaped QPSK"); ...:
Plot non-uniformly sampled data.
In [5]: t = np.array([0, 1, 2, 3, 5, 8, 13, 21, 34, 55]); \ ...: x = np.random.randn(t.size) ...: In [6]: plt.figure(); \ ...: sdr.plot.time_domain(t, x, marker="."); \ ...: plt.title("Non-uniformly sampled data"); ...: