-
sdr.plot.detector_pdfs(h0: scipy.stats.rv_continuous | None =
None
, h1: scipy.stats.rv_continuous | None =None
, threshold: float | None =None
, shade: bool =True
, annotate: bool =True
, x: NDArray[float64] | None =None
, points: int =1001
, p_h0: float =1e-06
, p_h1: float =0.001
, **kwargs) Plots the probability density functions (PDFs) of the detector under \(\mathcal{H}_0\) and \(\mathcal{H}_1\).
- Parameters:¶
- h0: scipy.stats.rv_continuous | None =
None
¶ The statistical distribution under \(\mathcal{H}_0\).
- h1: scipy.stats.rv_continuous | None =
None
¶ The statistical distribution under \(\mathcal{H}_1\).
- threshold: float | None =
None
¶ The detection threshold \(\gamma\).
- shade: bool =
True
¶ Indicates whether to shade the tails of the PDFs.
- annotate: bool =
True
¶ Indicates whether to annotate the plot with the probabilities of false alarm and detection.
- x: NDArray[float64] | None =
None
¶ The x-axis values to use for the plot. If not provided, it will be generated automatically.
- points: int =
1001
¶ The number of points to use for the x-axis.
- p_h0: float =
1e-06
¶ The probability of the \(\mathcal{H}_0\) tails to plot. The smaller the value, the longer the x-axis.
- p_h1: float =
0.001
¶ The probability of the \(\mathcal{H}_1\) tails to plot. The smaller the value, the longer the x-axis.
- **kwargs¶
Additional keyword arguments to pass to
matplotlib.pyplot.plot()
.
- h0: scipy.stats.rv_continuous | None =
See also
Example¶
In [1]: snr = 5 # Signal-to-noise ratio in dB In [2]: sigma2 = 1 # Noise variance In [3]: p_fa = 1e-1 # Probability of false alarm
In [4]: detector = "linear"; \ ...: h0 = sdr.h0(sigma2, detector); \ ...: h1 = sdr.h1(snr, sigma2, detector); \ ...: threshold = sdr.threshold(p_fa, sigma2, detector) ...: In [5]: plt.figure(); \ ...: sdr.plot.detector_pdfs(h0, h1, threshold); \ ...: plt.title("Linear Detector: Probability density functions"); ...: