- 
sdr.min_snr(p_d: ArrayLike, p_fa: ArrayLike, detector: 'coherent' | 'linear' | 'square-law' = 'square-law', complex: bool =True, n_c: int =1, n_nc: int | None =None) NDArray[float64]
- Computes the minimum signal-to-noise ratio (SNR) required to achieve the desired probability of detection \(P_d\). - Parameters:¶
- p_d: ArrayLike¶
- The desired probability of detection \(P_d\) in \((0, 1)\). 
- p_fa: ArrayLike¶
- The probability of false alarm \(P_{fa}\) in \((0, 1)\). 
- detector:   'coherent'   |   'linear'   |   'square-law'   =   'square-law'¶
- The detector type. - "coherent": A coherent detector, \(T(x) = \mathrm{Re}\{x[n]\}\).
- "linear": A linear detector, \(T(x) = \left| x[n] \right|\).
- "square-law": A square-law detector, \(T(x) = \left| x[n] \right|^2\).
 
- complex:   bool   =   True¶
- Indicates whether the input signal is real or complex. This affects how the SNR is converted to noise variance. 
- n_c:   int   =   1¶
- The number of samples to coherently integrate \(N_c\). 
- n_nc:   int   |   None   =   None¶
- The number of samples to non-coherently integrate \(N_{nc}\). Non-coherent integration is only allowable for linear and square-law detectors. 
 
- Returns:¶
- The minimum signal-to-noise ratio (SNR) required to achieve the desired \(P_d\). 
 - See also - Examples¶ - Compute the minimum required SNR to achieve \(P_d = 0.9\) and \(P_{fa} = 10^{-6}\) with a square-law detector. - In [1]: sdr.min_snr(0.9, 1e-6, detector="square-law") Out[1]: 13.183490056794499- Now suppose the signal is non-coherently integrated \(N_{nc} = 10\) times. Notice the minimum required SNR decreases, but by less than 10 dB. This is because non-coherent integration is less efficient than coherent integration. - In [2]: sdr.min_snr(0.9, 1e-6, detector="square-law", n_nc=10) Out[2]: 5.267486807285799- Now suppose the signal is coherently integrated for \(N_c = 10\) samples before the square-law detector. Notice the SNR now decreases by exactly 10 dB. - In [3]: sdr.min_snr(0.9, 1e-6, detector="square-law", n_c=10, n_nc=10) Out[3]: -4.732513192714245- Compare the theoretical minimum required SNR using a linear detector in - sdr.min_snr()with the estimated minimum required SNR using Albersheim’s approximation in- sdr.albersheim().- In [4]: p_d = 0.9; \ ...: p_fa = np.logspace(-12, -1, 21) ...: In [5]: plt.figure(); \ ...: plt.semilogx(p_fa, sdr.albersheim(p_d, p_fa, n_nc=1), linestyle="--"); \ ...: plt.semilogx(p_fa, sdr.albersheim(p_d, p_fa, n_nc=2), linestyle="--"); \ ...: plt.semilogx(p_fa, sdr.albersheim(p_d, p_fa, n_nc=10), linestyle="--"); \ ...: plt.semilogx(p_fa, sdr.albersheim(p_d, p_fa, n_nc=20), linestyle="--"); \ ...: plt.gca().set_prop_cycle(None); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=1, detector="linear"), label="$N_{nc}$ = 1"); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=2, detector="linear"), label="$N_{nc}$ = 2"); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=10, detector="linear"), label="$N_{nc}$ = 10"); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=20, detector="linear"), label="$N_{nc}$ = 20"); \ ...: plt.legend(); \ ...: plt.xlabel("Probability of false alarm, $P_{fa}$"); \ ...: plt.ylabel("Minimum required SNR (dB)"); \ ...: plt.title("Minimum required SNR across non-coherent combinations for $P_d = 0.9$\nfrom theory (solid) and Albersheim's approximation (dashed)"); ...: