-
sdr.berlekamp_massey(sequence: FieldArray, output: 'minimal' =
'minimal'
) Poly - sdr.berlekamp_massey(sequence: FieldArray, output: 'fibonacci') FLFSR
- sdr.berlekamp_massey(sequence: FieldArray, output: 'galois') GLFSR
Finds the minimal polynomial \(c(x)\) that produces the linear recurrent sequence \(y\).
This function implements the Berlekamp-Massey algorithm.
- Parameters:¶
- sequence: FieldArray¶
A linear recurrent sequence \(y\) in \(\mathrm{GF}(p^m)\).
- output: 'minimal' =
'minimal'
¶ - output: 'fibonacci'
- output: 'galois'
The output object type.
"minimal"
(default): Returns the minimal polynomial that generates the linear recurrent sequence. The minimal polynomial is a characteristic polynomial \(c(x)\) of minimal degree."fibonacci"
: Returns a Fibonacci LFSR that produces \(y\)."galois"
: Returns a Galois LFSR that produces \(y\).
- Returns:¶
The minimal polynomial \(c(x)\), a Fibonacci LFSR, or a Galois LFSR, depending on the value of
output
.
Notes¶
The minimal polynomial is the characteristic polynomial \(c(x)\) of minimal degree that produces the linear recurrent sequence \(y\).
\[c(x) = x^{n} - c_{n-1} \cdot x^{n-1} - c_{n-2} \cdot x^{n-2} - \dots - c_{1} \cdot x - c_{0}\]\[y_t = c_{n-1} \cdot y_{t-1} + c_{n-2} \cdot y_{t-2} + \dots + c_{1} \cdot y_{t-n+2} + c_{0} \cdot y_{t-n+1}\]For a linear sequence with order \(n\), at least \(2n\) output symbols are required to determine the minimal polynomial.
References¶
Examples¶
The sequence below is a degree-4 linear recurrent sequence over \(\mathrm{GF}(7)\).
In [1]: GF = galois.GF(7) In [2]: y = GF([5, 5, 1, 3, 1, 4, 6, 6, 5, 5])
The characteristic polynomial is \(c(x) = x^4 + x^2 + 3x + 5\) over \(\mathrm{GF}(7)\).
In [3]: sdr.berlekamp_massey(y) Out[3]: Poly(x^4 + x^2 + 3x + 5, GF(7))
Use the Berlekamp-Massey algorithm to return equivalent Fibonacci LFSR that reproduces the sequence.
In [4]: lfsr = sdr.berlekamp_massey(y, output="fibonacci") In [5]: print(lfsr) Fibonacci LFSR: field: GF(7) characteristic_poly: x^4 + x^2 + 3x + 5 feedback_poly: 5x^4 + 3x^3 + x^2 + 1 taps: [0 6 4 2] order: 4 state: [3 1 5 5] initial_state: [3 1 5 5] In [6]: z = lfsr.step(y.size); z Out[6]: GF([5, 5, 1, 3, 1, 4, 6, 6, 5, 5], order=7) In [7]: np.array_equal(y, z) Out[7]: True
Use the Berlekamp-Massey algorithm to return equivalent Galois LFSR that reproduces the sequence.
In [8]: lfsr = sdr.berlekamp_massey(y, output="galois") In [9]: print(lfsr) Galois LFSR: field: GF(7) characteristic_poly: x^4 + x^2 + 3x + 5 feedback_poly: 5x^4 + 3x^3 + x^2 + 1 taps: [2 4 6 0] order: 4 state: [2 6 5 5] initial_state: [2 6 5 5] In [10]: z = lfsr.step(y.size); z Out[10]: GF([5, 5, 1, 3, 1, 4, 6, 6, 5, 5], order=7) In [11]: np.array_equal(y, z) Out[11]: True