-
sdr.albersheim(p_d: ArrayLike, p_fa: ArrayLike, n_nc: ArrayLike =
1
) NDArray[float64] Estimates the minimum signal-to-noise ratio (SNR) required to achieve the desired probability of detection \(P_d\).
See also
Notes¶
This function implements Albersheim’s equation, given by
\[A = \ln \frac{0.62}{P_{fa}}\]\[B = \ln \frac{P_d}{1 - P_d}\]\[ \text{SNR}_{\text{dB}} = -5 \log_{10} N_{nc} + \left(6.2 + \frac{4.54}{\sqrt{N_{nc} + 0.44}}\right) \log_{10} \left(A + 0.12AB + 1.7B\right) . \]The error in the estimated minimum SNR is claimed to be less than 0.2 dB for
\[10^{-7} \leq P_{fa} \leq 10^{-3}\]\[0.1 \leq P_d \leq 0.9\]\[1 \le N_{nc} \le 8096 .\]Albersheim’s equation approximates a linear detector. However, the difference between linear and square-law detectors in minimal, so Albersheim’s equation finds wide use.
References¶
Examples¶
Compare the theoretical minimum required SNR using a linear detector in
sdr.min_snr()
with the estimated minimum required SNR using Albersheim’s approximation insdr.albersheim()
.In [1]: p_d = 0.9; \ ...: p_fa = np.logspace(-12, -1, 21) ...: In [2]: plt.figure(); \ ...: plt.semilogx(p_fa, sdr.albersheim(p_d, p_fa, n_nc=1), linestyle="--"); \ ...: plt.semilogx(p_fa, sdr.albersheim(p_d, p_fa, n_nc=2), linestyle="--"); \ ...: plt.semilogx(p_fa, sdr.albersheim(p_d, p_fa, n_nc=10), linestyle="--"); \ ...: plt.semilogx(p_fa, sdr.albersheim(p_d, p_fa, n_nc=20), linestyle="--"); \ ...: plt.gca().set_prop_cycle(None); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=1, detector="linear"), label="$N_{nc}$ = 1"); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=2, detector="linear"), label="$N_{nc}$ = 2"); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=10, detector="linear"), label="$N_{nc}$ = 10"); \ ...: plt.semilogx(p_fa, sdr.min_snr(p_d, p_fa, n_nc=20, detector="linear"), label="$N_{nc}$ = 20"); \ ...: plt.legend(); \ ...: plt.xlabel("Probability of false alarm, $P_{fa}$"); \ ...: plt.ylabel("Minimum required SNR (dB)"); \ ...: plt.title("Minimum required SNR across non-coherent combinations for $P_d = 0.9$\nfrom theory (solid) and Albersheim's approximation (dashed)"); ...:
Compare the theoretical non-coherent gain for a linear detector against the approximation from Albersheim’s equation. This comparison plots curves for various post-integration probabilities of detection.
In [3]: fig, ax = plt.subplots(1, 2, sharey=True); \ ...: p_fa = 1e-8; \ ...: n = np.linspace(1, 100, 31).astype(int); ...: In [4]: for p_d in [0.5, 0.8, 0.95]: ...: snr = sdr.min_snr(p_d, p_fa, detector="linear") ...: ax[0].semilogx(n, sdr.non_coherent_gain(n, snr, p_fa=p_fa, detector="linear", snr_ref="output"), label=p_d) ...: In [5]: ax[0].semilogx(n, sdr.coherent_gain(n), color="k", label="Coherent"); \ ...: ax[0].legend(title="$P_d$"); \ ...: ax[0].set_xlabel("Number of samples, $N_{nc}$"); \ ...: ax[0].set_ylabel("Non-coherent gain, $G_{nc}$"); \ ...: ax[0].set_title("Theoretical"); ...: In [6]: for p_d in [0.5, 0.8, 0.95]: ...: g_nc = sdr.albersheim(p_d, p_fa, 1) - sdr.albersheim(p_d, p_fa, n) ...: ax[1].semilogx(n, g_nc, linestyle="--", label=p_d) ...: In [7]: ax[1].semilogx(n, sdr.coherent_gain(n), color="k", label="Coherent"); \ ...: ax[1].legend(title="$P_d$"); \ ...: ax[1].set_xlabel("Number of samples, $N_{nc}$"); \ ...: ax[1].set_ylabel("Non-coherent gain, $G_{nc}$"); \ ...: ax[1].set_title("Albersheim's approximation"); ...: