-
static sdr.EnergyDetector.roc(snr: float, N_nc: float, p_fa: ArrayLike | None =
None
, complex: bool =True
) tuple[NDArray[float64], NDArray[float64]] Computes the receiver operating characteristic (ROC) curve.
- Parameters:¶
- snr: float¶
The received signal-to-noise ratio \(\sigma_s^2 / \sigma^2\) in dB.
- N_nc: float¶
The number of samples \(N_{nc}\) to non-coherently integrate.
- p_fa: ArrayLike | None =
None
¶ The probability of false alarm \(P_{fa}\). If
None
, the ROC curve is computed forp_fa = np.logspace(-10, 0, 101)
.- complex: bool =
True
¶ Indicates whether the signal is complex.
- Returns:¶
The probability of false alarm \(P_{fa}\).
The probability of detection \(P_d\).
Examples¶
Plot the theoretical ROC curves for integrating a single sample at various SNRs.
In [1]: plt.figure(); \ ...: sdr.plot.roc(*sdr.EnergyDetector.roc(-20, 1), label=f"SNR = -20 dB"); \ ...: sdr.plot.roc(*sdr.EnergyDetector.roc(-10, 1), label=f"SNR = -10 dB"); \ ...: sdr.plot.roc(*sdr.EnergyDetector.roc(0, 1), label=f"SNR = -0 dB"); \ ...: sdr.plot.roc(*sdr.EnergyDetector.roc(10, 1), label=f"SNR = 10 dB"); \ ...: sdr.plot.roc(*sdr.EnergyDetector.roc(20, 1), label=f"SNR = 20 dB"); ...:
Plot the theoretical ROC curves for various integration lengths at -10 dB SNR.
In [2]: plt.figure(); \ ...: sdr.plot.roc(*sdr.EnergyDetector.roc(-10, 1), label=f"N = 1"); \ ...: sdr.plot.roc(*sdr.EnergyDetector.roc(-10, 10), label=f"N = 10"); \ ...: sdr.plot.roc(*sdr.EnergyDetector.roc(-10, 100), label=f"N = 100"); \ ...: sdr.plot.roc(*sdr.EnergyDetector.roc(-10, 1_000), label=f"N = 1,000"); \ ...: sdr.plot.roc(*sdr.EnergyDetector.roc(-10, 5_000), label=f"N = 5,000"); ...: