class sdr.Decimator(sdr.PolyphaseFIR)

Implements a polyphase decimating FIR filter.

Notes

The polyphase decimating filter is equivalent to first filtering the input signal \(x[n]\) with the prototype FIR filter with feedforward coefficients \(h[n]\) and then downsampling the filtered signal by \(Q\) (by discarding \(Q-1\) samples every \(Q\) samples).

Instead, the polyphase decimating filter first decomposes the prototype FIR filter into \(Q\) polyphase filters with feedforward coefficients \(h_i[n]\). The polyphase filters are then applied to the commutated input signal \(x[n]\) in parallel. The outputs of the polyphase filters are then summed. This prevents the need to compute outputs that will be discarded, as is done in the first case.

Polyphase 3x Decimating FIR Filter Block Diagram
                          +------------------------+
 ..., x[6], x[3], x[0] -->| h[0], h[3], h[6], h[9] |---+
                          +------------------------+   |
                          +------------------------+   v
 ..., x[5], x[2], 0    -->| h[1], h[4], h[7], 0    |-->@--> ..., y[1], y[0]
                          +------------------------+   ^
                          +------------------------+   |
 ..., x[4], x[1], 0    -->| h[2], h[5], h[8], 0    |---+
                          +------------------------+

 Input Commutator                                           Output Summation
 (bottom-to-top)

 x[n] = Input signal with sample rate fs
 y[n] = Output signal with sample rate fs / Q
 h[n] = Prototype FIR filter
 @ = Adder

The polyphase feedforward taps \(h_i[n]\) are related to the prototype feedforward taps \(h[n]\) by

\[h_i[j] = h[i + j Q] .\]

References

  • fred harris, Multirate Signal Processing for Communication Systems, Chapter 7: Resampling Filters.

Examples

Create an input signal to interpolate.

In [1]: x = np.cos(np.pi / 64 * np.arange(280))

Create a polyphase filter that decimates by 7 using the Kaiser window method.

In [2]: fir = sdr.Decimator(7); fir
Out[2]: sdr.Decimator(7, 'kaiser', streaming=False)

In [3]: y = fir(x)

In [4]: plt.figure(); \
   ...: sdr.plot.time_domain(x, marker=".", label="Input"); \
   ...: sdr.plot.time_domain(y, sample_rate=fir.rate, marker="o", label="Decimated"); \
   ...: plt.title("Decimation by 7 with the Kaiser window method");
   ...: 
../../_images/sdr_Decimator_1.png

Create a streaming polyphase filter that decimates by 7 using the Kaiser window method. This filter preserves state between calls.

In [5]: fir = sdr.Decimator(7, streaming=True); fir
Out[5]: sdr.Decimator(7, 'kaiser', streaming=True)

In [6]: y1 = fir(x[0:70]); \
   ...: y2 = fir(x[70:140]); \
   ...: y3 = fir(x[140:210]); \
   ...: y4 = fir(x[210:280]); \
   ...: y5 = fir.flush()
   ...: 

In [7]: plt.figure(); \
   ...: sdr.plot.time_domain(x, marker=".", label="Input"); \
   ...: sdr.plot.time_domain(y1, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 0, marker="o", label="Decimated $y_1[n]$"); \
   ...: sdr.plot.time_domain(y2, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 70, marker="o", label="Decimated $y_2[n]$"); \
   ...: sdr.plot.time_domain(y3, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 140, marker="o", label="Decimated $y_3[n]$"); \
   ...: sdr.plot.time_domain(y4, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 210, marker="o", label="Decimated $y_4[n]$"); \
   ...: sdr.plot.time_domain(y5, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 280, marker="o", label="Decimated $y_5[n]$"); \
   ...: plt.title("Streaming decimation by 7 with the Kaiser window method");
   ...: 
../../_images/sdr_Decimator_2.png

Constructors

Decimator(decimation: int, ...)

Creates a polyphase FIR decimating filter.

Special methods

__call__(x: ArrayLike, mode: 'rate' | 'full' = 'rate') NDArray

Filters the input signal \(x[n]\) with the polyphase FIR filter.

__len__() int

Returns the filter length \(N + 1\).

Streaming mode only

reset()

Resets the filter state. Only useful when using streaming mode.

flush() NDArray

Flushes the filter state by passing zeros through the filter. Only useful when using streaming mode.

property streaming : bool

Indicates whether the filter is in streaming mode.

property state : NDArray

The filter state consisting of the previous \(N\) inputs.

Methods

impulse_response(N: int | None = None) NDArray

Returns the impulse response \(h[n]\) of the FIR filter.

step_response(N: int | None = None) NDArray

Returns the step response \(s[n]\) of the FIR filter.

frequency_response(...) tuple[numpy.ndarray[Any, numpy.dtype[numpy.float64]], numpy.ndarray[Any, numpy.dtype[numpy.complex128]]]
frequency_response(freqs: float, ...) complex
frequency_response(freqs, ...) ndarray[Any, dtype[complex128]]

Returns the frequency response \(H(\omega)\) of the FIR filter.

group_delay(...) tuple[NDArray, NDArray]

Returns the group delay \(\tau_g(\omega)\) of the FIR filter.

phase_delay(...) tuple[NDArray, NDArray]

Returns the phase delay \(\tau_{\phi}(\omega)\) of the FIR filter.

Properties

property method : 'kaiser' | 'custom'

The method used to design the polyphase decimating filter.

property branches : int

The number of polyphase branches \(B\).

property taps : NDArray

The prototype feedforward taps \(h[n]\).

property polyphase_taps : NDArray

The polyphase feedforward taps \(h_i[n]\).

property order : int

The order \(N = (M + 1)B - 1\) of the FIR prototype filter \(h[n]\).

property polyphase_order : int

The order \(M = (N + 1)/B - 1\) of each FIR polyphase filter \(h_i[n]\).

property input : 'hold' | 'top-to-bottom' | 'bottom-to-top'

The input connection method.

property output : 'sum' | 'top-to-bottom' | 'bottom-to-top' | 'all'

The output connection method.

property interpolation : int

The integer interpolation rate \(P\).

property decimation : int

The integer decimation rate \(Q\).

property rate : float

The fractional resampling rate \(r = P/Q\). The output sample rate is \(f_{s,out} = f_{s,in} \cdot r\).

property delay : int

The delay of polyphase FIR filter in samples.