Detection¶
Detectors¶
- class sdr.ReplicaCorrelator
Implements an clairvoyant replica-correlator detector.
- class sdr.EnergyDetector
Implements an energy detector.
Coherent integration¶
- sdr.coherent_gain(n_c: ArrayLike) NDArray[float64]
Computes the SNR improvement by coherently integrating \(N_C\) samples.
- sdr.coherent_gain_loss(integration_time, ...) NDArray[float64]
Computes the coherent gain loss (CGL) as a function of the given integration time and frequency offset.
- sdr.max_integration_time(cgl: ArrayLike, ...) NDArray[float32]
Computes the maximum integration time that produces at most the provided coherent gain loss (CGL).
- sdr.max_frequency_offset(cgl: ArrayLike, ...) NDArray[float32]
Computes the maximum frequency offset that produces at most the provided coherent gain loss (CGL).
Non-coherent integration¶
- sdr.non_coherent_gain(n_nc: ArrayLike, snr, ...) NDArray[float64]
Computes the SNR improvement by non-coherently integrating \(N_{NC}\) samples.
Theoretical performance¶
-
sdr.h0_theory(sigma2: float =
1.0
, ...) rv_continuous Computes the statistical distribution under the null hypothesis \(\mathcal{H}_0\).
-
sdr.h1_theory(snr: float, sigma2: float =
1.0
, ...) rv_continuous Computes the statistical distribution under the alternative hypothesis \(\mathcal{H}_1\).
- sdr.p_d(snr: ArrayLike, p_fa: ArrayLike, ...) NDArray[float64]
Computes the theoretical probability of detection \(P_{D}\).
- sdr.p_fa(threshold: ArrayLike, ...) NDArray[float64]
Computes the theoretical probability of false alarm \(P_{FA}\).
- sdr.threshold(p_fa: ArrayLike, ...) NDArray[float64]
Computes the theoretical detection threshold \(\gamma\).
Approximated performance¶
- sdr.albersheim(p_d: ArrayLike, p_fa, ...) NDArray[float64]
Estimates the minimum required single-sample SNR.