-
sdr.mix(x: NDArray, freq: float =
0
, phase: float =0
, sample_rate: float =1
, complex: bool =True
) NDArray Mixes the time-domain signal \(x[n]\) with a complex exponential or real sinusoid.
- Parameters:¶
- x: NDArray¶
The time-domain signal \(x[n]\).
- freq: float =
0
¶ The frequency \(f\) of the sinusoid in Hz (or 1/samples if
sample_rate=1
). The frequency must satisfy \(-f_s/2 \le f \le f_s/2\).- phase: float =
0
¶ The phase \(\phi\) of the sinusoid in degrees.
- sample_rate: float =
1
¶ The sample rate \(f_s\) of the signal.
- complex: bool =
True
¶ Indicates whether to mix by a complex exponential or real sinusoid.
True
: \(y[n] = x[n] \cdot \exp \left[ j \left( \frac{2 \pi f}{f_s} n + \phi \right) \right]\)False
: \(y[n] = x[n] \cdot \cos \left( \frac{2 \pi f}{f_s} n + \phi \right)\)
- Returns:¶
The mixed signal \(y[n]\).
Examples¶
Create a complex exponential with a frequency of 10 Hz and phase of 45 degrees.
In [1]: sample_rate = 1e3; \ ...: N = 100; \ ...: x = np.exp(1j * (2 * np.pi * 10 * np.arange(N) / sample_rate + np.pi/4)) ...: In [2]: plt.figure(); \ ...: sdr.plot.time_domain(x, sample_rate=sample_rate); \ ...: plt.title(r"Complex exponential with $f=10$ Hz and $\phi=45$ degrees"); ...:
Mix the signal to baseband by removing the frequency rotation and the phase offset.
In [3]: y = sdr.mix(x, freq=-10, phase=-45, sample_rate=sample_rate) In [4]: plt.figure(); \ ...: sdr.plot.time_domain(y, sample_rate=sample_rate); \ ...: plt.title(r"Baseband signal with $f=0$ Hz and $\phi=0$ degrees"); ...: