class sdr.Interpolator(sdr.PolyphaseFIR)

Implements a polyphase interpolating FIR filter.

Notes

The polyphase interpolating filter is equivalent to first upsampling the input signal \(x[n]\) by \(P\) (by inserting \(P-1\) zeros between each sample) and then filtering the upsampled signal with the prototype FIR filter with feedforward coefficients \(h[n]\).

Instead, the polyphase interpolating filter first decomposes the prototype FIR filter into \(P\) polyphase filters with feedforward coefficients \(h_i[n]\). The polyphase filters are then applied to the input signal \(x[n]\) in parallel. The output of the polyphase filters are then commutated to produce the output signal \(y[n]\). This prevents the need to multiply with zeros in the upsampled input, as is needed in the first case.

Polyphase 3x Interpolating FIR Filter Block Diagram
                       +------------------------+
                   +-->| h[0], h[3], h[6], h[9] |--> ..., y[3], y[0]
                   |   +------------------------+
                   |   +------------------------+
 ..., x[1], x[0] --+-->| h[1], h[4], h[7], 0    |--> ..., y[4], y[1]
                   |   +------------------------+
                   |   +------------------------+
                   +-->| h[2], h[5], h[8], 0    |--> ..., y[5], y[2]
                       +------------------------+

 Input Hold                                          Output Commutator
                                                     (top-to-bottom)

 x[n] = Input signal with sample rate fs
 y[n] = Output signal with sample rate fs * P
 h[n] = Prototype FIR filter

The polyphase feedforward taps \(h_i[n]\) are related to the prototype feedforward taps \(h[n]\) by

\[h_i[j] = h[i + j P] .\]

References

  • fred harris, Multirate Signal Processing for Communication Systems, Chapter 7: Resampling Filters.

Examples

Create an input signal to interpolate.

In [1]: x = np.cos(np.pi / 4 * np.arange(40))

Create a polyphase filter that interpolates by 7 using the Kaiser window method.

In [2]: fir = sdr.Interpolator(7); fir
Out[2]: sdr.Interpolator(7, 'kaiser', streaming=False)

In [3]: y = fir(x)

In [4]: plt.figure(); \
   ...: sdr.plot.time_domain(x, marker="o", label="Input"); \
   ...: sdr.plot.time_domain(y, sample_rate=fir.rate, marker=".", label="Interpolated"); \
   ...: plt.title("Interpolation by 7 with the Kaiser window method");
   ...: 
../../_images/sdr_Interpolator_1.png

Create a streaming polyphase filter that interpolates by 7 using the Kaiser window method. This filter preserves state between calls.

In [5]: fir = sdr.Interpolator(7, streaming=True); fir
Out[5]: sdr.Interpolator(7, 'kaiser', streaming=True)

In [6]: y1 = fir(x[0:10]); \
   ...: y2 = fir(x[10:20]); \
   ...: y3 = fir(x[20:30]); \
   ...: y4 = fir(x[30:40]); \
   ...: y5 = fir.flush()
   ...: 

In [7]: plt.figure(); \
   ...: sdr.plot.time_domain(x, marker="o", label="Input"); \
   ...: sdr.plot.time_domain(y1, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 0, marker=".", label="Interpolated $y_1[n]$"); \
   ...: sdr.plot.time_domain(y2, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 10, marker=".", label="Interpolated $y_2[n]$"); \
   ...: sdr.plot.time_domain(y3, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 20, marker=".", label="Interpolated $y_3[n]$"); \
   ...: sdr.plot.time_domain(y4, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 30, marker=".", label="Interpolated $y_4[n]$"); \
   ...: sdr.plot.time_domain(y5, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 40, marker=".", label="Interpolated $y_5[n]$"); \
   ...: plt.title("Streaming interpolation by 7 with the Kaiser window method");
   ...: 
../../_images/sdr_Interpolator_2.png

Create a polyphase filter that interpolates by 7 using linear method.

In [8]: fir = sdr.Interpolator(7, "linear"); fir
Out[8]: sdr.Interpolator(7, 'linear', streaming=False)

In [9]: y = fir(x)

In [10]: plt.figure(); \
   ....: sdr.plot.time_domain(x, marker="o", label="Input"); \
   ....: sdr.plot.time_domain(y, sample_rate=fir.rate, marker=".", label="Interpolated"); \
   ....: plt.title("Interpolation by 7 with the linear method");
   ....: 
../../_images/sdr_Interpolator_3.png

Create a polyphase filter that interpolates by 7 using the zero-order hold method. It is recommended to use the "full" convolution mode. This way the first upsampled symbol has \(r\) samples.

In [11]: fir = sdr.Interpolator(7, "zoh"); fir
Out[11]: sdr.Interpolator(7, 'zoh', streaming=False)

In [12]: y = fir(x, mode="full")

In [13]: plt.figure(); \
   ....: sdr.plot.time_domain(x, marker="o", label="Input"); \
   ....: sdr.plot.time_domain(y, sample_rate=fir.rate, offset=-fir.delay/fir.rate, marker=".", label="Interpolated"); \
   ....: plt.title("Interpolation by 7 with the zero-order hold method");
   ....: 
../../_images/sdr_Interpolator_4.png

Constructors

Interpolator(interpolation: int, ...)

Creates a polyphase FIR interpolating filter.

Special methods

__call__(x: ArrayLike, mode: 'rate' | 'full' = 'rate') NDArray

Filters the input signal \(x[n]\) with the polyphase FIR filter.

__len__() int

Returns the filter length \(N + 1\).

Streaming mode only

reset()

Resets the filter state. Only useful when using streaming mode.

flush() NDArray

Flushes the filter state by passing zeros through the filter. Only useful when using streaming mode.

property streaming : bool

Indicates whether the filter is in streaming mode.

property state : NDArray

The filter state consisting of the previous \(N\) inputs.

Methods

impulse_response(N: int | None = None) NDArray

Returns the impulse response \(h[n]\) of the FIR filter. The impulse response \(h[n]\) is the filter output when the input is an impulse \(\delta[n]\).

step_response(N: int | None = None) NDArray

Returns the step response \(s[n]\) of the FIR filter. The step response \(s[n]\) is the filter output when the input is a unit step \(u[n]\).

frequency_response(...) tuple[numpy.ndarray[Any, numpy.dtype[numpy.float64]], numpy.ndarray[Any, numpy.dtype[numpy.complex128]]]
frequency_response(freqs: float, ...) complex
frequency_response(freqs, ...) ndarray[Any, dtype[complex128]]

Returns the frequency response \(H(\omega)\) of the FIR filter.

group_delay(...) tuple[NDArray, NDArray]

Returns the group delay \(\tau_g(\omega)\) of the FIR filter.

phase_delay(...) tuple[NDArray, NDArray]

Returns the phase delay \(\tau_{\phi}(\omega)\) of the FIR filter.

Properties

property method : 'kaiser' | 'linear' | 'linear-matlab' | 'zoh' | 'custom'

The method used to design the polyphase interpolating filter.

property branches : int

The number of polyphase branches \(B\).

property taps : NDArray

The prototype feedforward taps \(h[n]\).

property polyphase_taps : NDArray

The polyphase feedforward taps \(h_i[n]\).

property order : int

The order \(N = (M + 1)B - 1\) of the FIR prototype filter \(h[n]\).

property polyphase_order : int

The order \(M = (N + 1)/B - 1\) of each FIR polyphase filter \(h_i[n]\).

property input : 'hold' | 'top-to-bottom' | 'bottom-to-top'

The input connection method.

property output : 'sum' | 'top-to-bottom' | 'bottom-to-top' | 'all'

The output connection method.

property interpolation : int

The integer interpolation rate \(P\).

property decimation : int

The integer decimation rate \(Q\).

property rate : float

The fractional resampling rate \(r = P/Q\). The output sample rate is \(f_{s,out} = f_{s,in} \cdot r\).

property delay : int

The delay of polyphase FIR filter in samples. The delay indicates the output sample index that corresponds to the first input sample.