- class sdr.Integrator(sdr.IIR)
Implements an integrator IIR filter.
Notes¶
A discrete-time integrator is an IIR filter that continuously accumulates the input signal. Accordingly, it has infinite gain at DC.
The backward integrator is defined by:
\[y[n] = y[n-1] + x[n-1]\]\[H(z) = \frac{z^{-1}}{1 - z^{-1}}\]The trapezoidal integrator is defined by:
\[y[n] = y[n-1] + \frac{1}{2}x[n] + \frac{1}{2}x[n-1]\]\[H(z) = \frac{1}{2} \frac{1 + z^{-1}}{1 - z^{-1}}\]The forward integrator is defined by:
\[y[n] = y[n-1] + x[n]\]\[H(z) = \frac{1}{1 - z^{-1}}\]Examples¶
Create integrating IIR filters.
In [1]: iir_back = sdr.Integrator("backward"); \ ...: iir_trap = sdr.Integrator("trapezoidal"); \ ...: iir_forw = sdr.Integrator("forward") ...:
Integrate a Gaussian pulse.
In [2]: x = sdr.gaussian(0.3, 5, 10); \ ...: y_back = iir_back(x); \ ...: y_trap = iir_trap(x); \ ...: y_forw = iir_forw(x) ...: In [3]: plt.figure(); \ ...: sdr.plot.time_domain(x, label="Input"); \ ...: sdr.plot.time_domain(y_back, label="Integral (backward)"); \ ...: sdr.plot.time_domain(y_trap, label="Integral (trapezoidal)"); \ ...: sdr.plot.time_domain(y_forw, label="Integral (forward)"); \ ...: plt.title("Discrete-time integration of a Gaussian pulse"); ...:
Integrate a raised cosine pulse.
In [4]: x = sdr.root_raised_cosine(0.1, 8, 10); \ ...: y_back = iir_back(x); \ ...: y_trap = iir_trap(x); \ ...: y_forw = iir_forw(x) ...: In [5]: plt.figure(); \ ...: sdr.plot.time_domain(x, label="Input"); \ ...: sdr.plot.time_domain(y_back, label="Integral (backward)"); \ ...: sdr.plot.time_domain(y_trap, label="Integral (trapezoidal)"); \ ...: sdr.plot.time_domain(y_forw, label="Integral (forward)"); \ ...: plt.title("Discrete-time integration of a raised cosine pulse"); ...:
Plot the frequency responses.
In [6]: plt.figure(); \ ...: sdr.plot.magnitude_response(iir_back, label="Backward"); \ ...: sdr.plot.magnitude_response(iir_trap, label="Trapezoidal"); \ ...: sdr.plot.magnitude_response(iir_forw, label="Forward"); \ ...: f = np.linspace(0, 0.5, 100); \ ...: plt.plot(f, sdr.db(np.abs(1/(2 * np.pi * f))**2), color="k", linestyle="--", label="Theory"); \ ...: plt.legend(); \ ...: plt.title("Magnitude response of integrating IIR filters"); ...:
Constructors¶
- Integrator(...)
Creates an integrating IIR filter.
- classmethod ZerosPoles(zeros: ArrayLike, poles, ...) Self
Creates an IIR filter from its zeros, poles, and gain.
Special methods¶
Streaming mode only¶
- reset()
Resets the filter state. Only useful when using streaming mode.
- property state : NDArray
The filter state.
Methods¶
-
impulse_response(N: int =
100
) NDArray Returns the impulse response \(h[n]\) of the IIR filter. The impulse response \(h[n]\) is the filter output when the input is an impulse \(\delta[n]\).
-
step_response(N: int =
100
) NDArray Returns the step response \(s[n]\) of the IIR filter. The step response \(s[n]\) is the filter output when the input is a unit step \(u[n]\).
- frequency_response(...) tuple[numpy.ndarray[Any, numpy.dtype[numpy.float64]], numpy.ndarray[Any, numpy.dtype[numpy.complex128]]]
- frequency_response(freqs, ...) complex
- frequency_response(freqs, ...) ndarray[Any, dtype[complex128]]
Returns the frequency response \(H(\omega)\) of the IIR filter.
Properties¶
- property b_taps : NDArray
The feedforward taps \(b_i\) for \(i = 0,...,M\).
- property a_taps : NDArray
The feedback taps \(a_j\) for \(j = 0,...,N\).
- property zeros : NDArray
The zeros of the IIR filter.
- property poles : NDArray
The poles of the IIR filter.