- property sdr.GLFSR.taps : FieldArray
The shift register taps \(T = [c_0, c_1, \dots, c_{n-2}, c_{n-1}]\). The taps of the shift register define the linear recurrence relation.
Examples¶
In [1]: c = galois.primitive_poly(7, 4); c Out[1]: Poly(x^4 + x^2 + 3x + 5, GF(7)) In [2]: taps = -c.coeffs[1:][::-1]; taps Out[2]: GF([2, 4, 6, 0], order=7) In [3]: lfsr = sdr.GLFSR.Taps(taps); lfsr Out[3]: <Galois LFSR: f(x) = 5x^4 + 3x^3 + x^2 + 1 over GF(7)> In [4]: lfsr.taps Out[4]: GF([2, 4, 6, 0], order=7)