class sdr.FractionalDelay(sdr.FIR)

Implements a fractional delay FIR filter.

Examples

Design \(\Delta n = 0.21719\) delay filters with various lengths. Examine the width and flatness of the frequency response passband.

In [1]: plt.figure();

In [2]: for length in [4, 8, 16, 32, 64, 128]:
   ...:     fir = sdr.FractionalDelay(length, 0.21719)
   ...:     sdr.plot.magnitude_response(fir, label=f"$L = {length}$")
   ...: 

In [3]: plt.legend(loc="lower left");
../../_images/sdr_FractionalDelay_1.png

Design filters with length \(L = 8\) and various fractional delays. Examine the effects on the magnitude response outside the passband as a function of the fractional delay. Note the symmetry about \(\Delta n = 0.5\) and that the out-of-band magnitude response is worst at \(\Delta n = 0.5\).

In [4]: plt.figure();

In [5]: for delay in np.arange(0.1, 1, 0.1):
   ...:     fir = sdr.FractionalDelay(8, delay)
   ...:     sdr.plot.magnitude_response(fir, label=f"$\Delta n = {delay:0.1f}$")
   ...: 

In [6]: plt.ylim(-10, 1); \
   ...: plt.legend(loc="lower left");
   ...: 
../../_images/sdr_FractionalDelay_2.png

Examine the effects on the group delay outside the passband as a function of the fractional delay. Note the symmetry about \(\Delta n = 0.5\). The out-of-band group delay is worst around \(\Delta n \approx 0.5\), however the group delay is perfectly flat at exactly \(\Delta n = 0.5\).

In [7]: plt.figure();

In [8]: for delay in np.arange(0.1, 1, 0.1):
   ...:     fir = sdr.FractionalDelay(8, delay)
   ...:     sdr.plot.group_delay(fir, label=f"$\Delta n = {delay:0.1f}$")
   ...: 

In [9]: plt.legend(loc="lower left");
../../_images/sdr_FractionalDelay_3.png

Constructors

FractionalDelay(length: int, delay: float)

Creates a fractional delay FIR filter.

Special methods

__call__(x: ArrayLike, ...) NDArray

Filters the input signal \(x[n]\) with the FIR filter.

__len__() int

Returns the filter length \(N + 1\).

Streaming mode only

reset()

Resets the filter state. Only useful when using streaming mode.

flush() NDArray

Flushes the filter state by passing zeros through the filter. Only useful when using streaming mode.

property streaming : bool

Indicates whether the filter is in streaming mode.

property state : NDArray

The filter state consisting of the previous \(N\) inputs.

Methods

impulse_response(N: int | None = None) NDArray

Returns the impulse response \(h[n]\) of the FIR filter. The impulse response \(h[n]\) is the filter output when the input is an impulse \(\delta[n]\).

step_response(N: int | None = None) NDArray

Returns the step response \(s[n]\) of the FIR filter. The step response \(s[n]\) is the filter output when the input is a unit step \(u[n]\).

frequency_response(...) tuple[numpy.ndarray[Any, numpy.dtype[numpy.float64]], numpy.ndarray[Any, numpy.dtype[numpy.complex128]]]
frequency_response(freqs: float, ...) complex
frequency_response(freqs, ...) ndarray[Any, dtype[complex128]]

Returns the frequency response \(H(\omega)\) of the FIR filter.

group_delay(...) tuple[NDArray, NDArray]

Returns the group delay \(\tau_g(\omega)\) of the FIR filter.

phase_delay(...) tuple[NDArray, NDArray]

Returns the phase delay \(\tau_{\phi}(\omega)\) of the FIR filter.

Properties

property taps : NDArray

The feedforward taps \(h[n]\) with length \(N + 1\).

property order : int

The order of the FIR filter \(N\).

property delay : int

The delay of the FIR filter \(d = \lfloor \frac{N + 1}{2} \rfloor\) in samples.