- class sdr.Differentiator(sdr.FIR)
Implements a differentiator FIR filter.
Notes¶
A discrete-time differentiator is an FIR filter with impulse response
\[h[n] = \frac{(-1)^n}{n} \cdot h_{win}[n], \quad -\frac{N}{2} \le n \le \frac{N}{2} .\]The truncated impulse response is multiplied by the windowing function \(h_{win}[n]\).
References¶
Michael Rice, Digital Communications: A Discrete Time Approach, Section 3.3.3.
Examples¶
Create a differentiator FIR filter.
In [1]: fir = sdr.Differentiator()
Differentiate a Gaussian pulse.
In [2]: x = sdr.gaussian(0.3, 5, 10); \ ...: y = fir(x, "same") ...: In [3]: plt.figure(); \ ...: sdr.plot.time_domain(x, label="Input"); \ ...: sdr.plot.time_domain(y, label="Derivative"); \ ...: plt.title("Discrete-time differentiation of a Gaussian pulse"); ...:
Differentiate a raised cosine pulse.
In [4]: x = sdr.root_raised_cosine(0.1, 8, 10); \ ...: y = fir(x, "same") ...: In [5]: plt.figure(); \ ...: sdr.plot.time_domain(x, label="Input"); \ ...: sdr.plot.time_domain(y, label="Derivative"); \ ...: plt.title("Discrete-time differentiation of a raised cosine pulse"); ...:
Plot the frequency response across filter order.
In [6]: fir_2 = sdr.Differentiator(2); \ ...: fir_6 = sdr.Differentiator(6); \ ...: fir_10 = sdr.Differentiator(10); \ ...: fir_20 = sdr.Differentiator(20); \ ...: fir_40 = sdr.Differentiator(40); \ ...: fir_80 = sdr.Differentiator(80) ...: In [7]: plt.figure(); \ ...: sdr.plot.magnitude_response(fir_2, y_axis="linear", label="N=2"); \ ...: sdr.plot.magnitude_response(fir_6, y_axis="linear", label="N=6"); \ ...: sdr.plot.magnitude_response(fir_10, y_axis="linear", label="N=10"); \ ...: sdr.plot.magnitude_response(fir_20, y_axis="linear", label="N=20"); \ ...: sdr.plot.magnitude_response(fir_40, y_axis="linear", label="N=40"); \ ...: sdr.plot.magnitude_response(fir_80, y_axis="linear", label="N=80"); \ ...: f = np.linspace(0, 0.5, 100); \ ...: plt.plot(f, np.abs(2 * np.pi * f)**2, color="k", linestyle="--", label="Theory"); \ ...: plt.legend(); \ ...: plt.title("Magnitude response of differentiator FIR filters"); ...:
Constructors¶
-
Differentiator(order: int =
20
, ...) Creates a differentiator FIR filter.
Special methods¶
Streaming mode only¶
- reset()
Resets the filter state. Only useful when using streaming mode.
- flush() NDArray
Flushes the filter state by passing zeros through the filter. Only useful when using streaming mode.
- property state : NDArray
The filter state consisting of the previous \(N\) inputs.
Methods¶
-
impulse_response(N: int | None =
None
) NDArray Returns the impulse response \(h[n]\) of the FIR filter. The impulse response \(h[n]\) is the filter output when the input is an impulse \(\delta[n]\).
-
step_response(N: int | None =
None
) NDArray Returns the step response \(s[n]\) of the FIR filter. The step response \(s[n]\) is the filter output when the input is a unit step \(u[n]\).
- frequency_response(...) tuple[numpy.ndarray[Any, numpy.dtype[numpy.float64]], numpy.ndarray[Any, numpy.dtype[numpy.complex128]]]
- frequency_response(freqs: float, ...) complex
- frequency_response(freqs, ...) ndarray[Any, dtype[complex128]]
Returns the frequency response \(H(\omega)\) of the FIR filter.
- group_delay(...) tuple[NDArray, NDArray]
Returns the group delay \(\tau_g(\omega)\) of the FIR filter.
- phase_delay(...) tuple[NDArray, NDArray]
Returns the phase delay \(\tau_{\phi}(\omega)\) of the FIR filter.
Properties¶
- property taps : NDArray
The feedforward taps \(h[n]\) with length \(N + 1\).