- class sdr.Decimator(sdr.PolyphaseFIR)
Implements a polyphase decimating FIR filter.
Notes¶
The polyphase decimating filter is equivalent to first filtering the input signal \(x[n]\) with the prototype FIR filter with feedforward coefficients \(h[n]\) and then downsampling the filtered signal by \(Q\) (by discarding \(Q-1\) samples every \(Q\) samples).
Instead, the polyphase decimating filter first decomposes the prototype FIR filter into \(Q\) polyphase filters with feedforward coefficients \(h_i[n]\). The polyphase filters are then applied to the commutated input signal \(x[n]\) in parallel. The outputs of the polyphase filters are then summed. This prevents the need to compute outputs that will be discarded, as is done in the first case.
+------------------------+ ..., x[6], x[3], x[0] -->| h[0], h[3], h[6], h[9] |---+ +------------------------+ | +------------------------+ v ..., x[5], x[2], 0 -->| h[1], h[4], h[7], 0 |-->@--> ..., y[1], y[0] +------------------------+ ^ +------------------------+ | ..., x[4], x[1], 0 -->| h[2], h[5], h[8], 0 |---+ +------------------------+ Input Commutator Output Summation (bottom-to-top) x[n] = Input signal with sample rate fs y[n] = Output signal with sample rate fs / Q h[n] = Prototype FIR filter @ = Adder
The polyphase feedforward taps \(h_i[n]\) are related to the prototype feedforward taps \(h[n]\) by
\[h_i[j] = h[i + j Q] .\]References¶
fred harris, Multirate Signal Processing for Communication Systems, Chapter 7: Resampling Filters.
Examples¶
Create an input signal to interpolate.
In [1]: x = np.cos(np.pi / 64 * np.arange(280))
Create a polyphase filter that decimates by 7 using the Kaiser window method.
In [2]: fir = sdr.Decimator(7); fir Out[2]: sdr.Decimator(7, 'kaiser', streaming=False) In [3]: y = fir(x) In [4]: plt.figure(); \ ...: sdr.plot.time_domain(x, marker=".", label="Input"); \ ...: sdr.plot.time_domain(y, sample_rate=fir.rate, marker="o", label="Decimated"); \ ...: plt.title("Decimation by 7 with the Kaiser window method"); ...:
Create a streaming polyphase filter that decimates by 7 using the Kaiser window method. This filter preserves state between calls.
In [5]: fir = sdr.Decimator(7, streaming=True); fir Out[5]: sdr.Decimator(7, 'kaiser', streaming=True) In [6]: y1 = fir(x[0:70]); \ ...: y2 = fir(x[70:140]); \ ...: y3 = fir(x[140:210]); \ ...: y4 = fir(x[210:280]); \ ...: y5 = fir.flush() ...: In [7]: plt.figure(); \ ...: sdr.plot.time_domain(x, marker=".", label="Input"); \ ...: sdr.plot.time_domain(y1, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 0, marker="o", label="Decimated $y_1[n]$"); \ ...: sdr.plot.time_domain(y2, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 70, marker="o", label="Decimated $y_2[n]$"); \ ...: sdr.plot.time_domain(y3, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 140, marker="o", label="Decimated $y_3[n]$"); \ ...: sdr.plot.time_domain(y4, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 210, marker="o", label="Decimated $y_4[n]$"); \ ...: sdr.plot.time_domain(y5, sample_rate=fir.rate, offset=-fir.delay/fir.rate + 280, marker="o", label="Decimated $y_5[n]$"); \ ...: plt.title("Streaming decimation by 7 with the Kaiser window method"); ...:
Constructors¶
- Decimator(decimation: int, ...)
Creates a polyphase FIR decimating filter.
Special methods¶
-
__call__(x: ArrayLike, mode: 'rate' | 'full' =
'rate'
) NDArray Filters the input signal \(x[n]\) with the polyphase FIR filter.
Streaming mode only¶
- reset()
Resets the filter state. Only useful when using streaming mode.
- flush() NDArray
Flushes the filter state by passing zeros through the filter. Only useful when using streaming mode.
- property state : NDArray
The filter state consisting of the previous \(N\) inputs.
Methods¶
-
impulse_response(N: int | None =
None
) NDArray Returns the impulse response \(h[n]\) of the FIR filter. The impulse response \(h[n]\) is the filter output when the input is an impulse \(\delta[n]\).
-
step_response(N: int | None =
None
) NDArray Returns the step response \(s[n]\) of the FIR filter. The step response \(s[n]\) is the filter output when the input is a unit step \(u[n]\).
- frequency_response(...) tuple[numpy.ndarray[Any, numpy.dtype[numpy.float64]], numpy.ndarray[Any, numpy.dtype[numpy.complex128]]]
- frequency_response(freqs: float, ...) complex
- frequency_response(freqs, ...) ndarray[Any, dtype[complex128]]
Returns the frequency response \(H(\omega)\) of the FIR filter.
- group_delay(...) tuple[NDArray, NDArray]
Returns the group delay \(\tau_g(\omega)\) of the FIR filter.
- phase_delay(...) tuple[NDArray, NDArray]
Returns the phase delay \(\tau_{\phi}(\omega)\) of the FIR filter.
Properties¶
- property method : 'kaiser' | 'custom'
The method used to design the polyphase decimating filter.
- property taps : NDArray
The prototype feedforward taps \(h[n]\).
- property polyphase_taps : NDArray
The polyphase feedforward taps \(h_i[n]\).
- property polyphase_order : int
The order \(M = (N + 1)/B - 1\) of each FIR polyphase filter \(h_i[n]\).
- property input : 'hold' | 'top-to-bottom' | 'bottom-to-top'
The input connection method.
- property output : 'sum' | 'top-to-bottom' | 'bottom-to-top' | 'all'
The output connection method.
- property interpolation : int
The integer interpolation rate \(P\).
- property decimation : int
The integer decimation rate \(Q\).
- property rate : float
The fractional resampling rate \(r = P/Q\). The output sample rate is \(f_{s,out} = f_{s,in} \cdot r\).
- property delay : int
The delay of polyphase FIR filter in samples. The delay indicates the output sample index that corresponds to the first input sample.