class sdr.Channelizer(sdr.PolyphaseFIR)

Implements a polyphase channelizer FIR filter.

Notes

The polyphase channelizer efficiently splits the input signal \(x[n]\) with sample rate \(f_s\) into \(C\) equally-spaced channels. Each channel has a bandwidth of \(f_s / C\).

The polyphase channelizer is equivalent to first mixing the input signal \(x[n]\) with \(C\) complex exponentials with frequencies \(f_i = -i \cdot f_s / C\), filtering the mixed signals with the prototype FIR filter with feedforward coefficients \(h[n]\), and then downsampling the filtered signals by \(C\) (by discarding \(C-1\) samples every \(C\) samples).

Instead, the polyphase channelizer first decomposes the prototype FIR filter into \(C\) polyphase filters with feedforward coefficients \(h_i[n]\). The polyphase filters are then applied to the commutated input signal \(x[n]\) in parallel. The outputs of the polyphase filters are then inverse Discrete Fourier transformed (IDFT) to produce the \(C\) channelized output signals \(y_i[n]\).

Polyphase Channelizer FIR Filter Block Diagram
                                                       +------+
                          +------------------------+   |      |
 ..., x[6], x[3], x[0] -->| h[0], h[3], h[6], h[9] |-->|      |--> ..., y[0,1], y[0,0]
                          +------------------------+   |      |
                          +------------------------+   |      |
 ..., x[5], x[2], 0    -->| h[1], h[4], h[7], 0    |-->| IDFT |--> ..., y[1,1], y[1,0]
                          +------------------------+   |      |
                          +------------------------+   |      |
 ..., x[4], x[1], 0    -->| h[2], h[5], h[8], 0    |-->|      |--> ..., y[2,1], y[2,0]
                          +------------------------+   |      |
                                                       +------+

 Input Commutator                                                 Parallel Outputs
 (bottom-to-top)

 x[n] = Input signal with sample rate fs
 y[i,n] = Channel i output signal with sample rate fs / C
 h[n] = Prototype FIR filter

The polyphase feedforward taps \(h_i[n]\) are related to the prototype feedforward taps \(h[n]\) by

\[h_i[j] = h[i + j C] .\]

References

  • fred harris, Multirate Signal Processing for Communication Systems, Chapter 6.1: Channelizer.

Examples

Create a channelizer with 10 channels.

In [1]: C = 10

In [2]: channelizer = sdr.Channelizer(C); channelizer
Out[2]: sdr.Channelizer(10, 'kaiser', streaming=False)

Create an input signal. Each channel has a tone with increasing frequency. The amplitude of each tone also increases by 2 dB for each channel.

In [3]: x = np.random.randn(10_000) + 1j * np.random.randn(10_000)

In [4]: for i in range(C):
   ...:     x += sdr.linear(10 + 2 * i) * np.exp(1j * 2 * np.pi * (i + 0.25 / C * i) / C * np.arange(10_000))
   ...: 

Plot the input signal and overlay the channel boundaries. Note, Channel 5 is centered at \(f = 0.5\). So, it wraps from positive to negative frequencies.

In [5]: plt.figure(); \
   ...: sdr.plot.periodogram(x, fft=1024, color="k", label="Input $x[n]$");
   ...: 

In [6]: for i in range(C):
   ...:     f_start = (i - 0.5) / C
   ...:     f_stop = (i + 0.5) / C
   ...:     if f_start > 0.5:
   ...:         f_start -= 1
   ...:         f_stop -= 1
   ...:     plt.fill_betweenx([0, 80], f_start, f_stop, alpha=0.2, label=f"Channel {i}")
   ...: 

In [7]: plt.xticks(np.arange(-0.5, 0.6, 0.1)); \
   ...: plt.legend(); \
   ...: plt.title("Input signals spread across 10 channels");
   ...: 
../../_images/sdr_Channelizer_1.png

Channelize the input signal with sample rate \(f_s\) into 10 channels, each with sample rate \(f_s / 10\).

In [8]: Y = channelizer(x)

In [9]: x.shape, Y.shape
Out[9]: ((10000,), (10, 1001))
In [10]: plt.figure();

In [11]: for i in range(C):
   ....:     sdr.plot.periodogram(Y[i, :], fft=1024, label=f"Channel {i}")
   ....: 

In [12]: plt.xticks(np.arange(-0.5, 0.6, 0.1)); \
   ....: plt.title("Output signals from 10 channels");
   ....: 
../../_images/sdr_Channelizer_2.png

Constructors

Channelizer(channels: int, ...)

Creates a polyphase FIR channelizing filter.

Special methods

__call__(x: ArrayLike, mode: 'rate' | 'full' = 'rate') NDArray

Channelizes the input signal \(x[n]\) with the polyphase FIR filter.

__len__() int

Returns the filter length \(N + 1\).

Streaming mode only

reset()

Resets the filter state. Only useful when using streaming mode.

flush() NDArray

Flushes the filter state by passing zeros through the filter. Only useful when using streaming mode.

property streaming : bool

Indicates whether the filter is in streaming mode.

property state : NDArray

The filter state consisting of the previous \(N\) inputs.

Methods

impulse_response(N: int | None = None) NDArray

Returns the impulse response \(h[n]\) of the FIR filter. The impulse response \(h[n]\) is the filter output when the input is an impulse \(\delta[n]\).

step_response(N: int | None = None) NDArray

Returns the step response \(s[n]\) of the FIR filter. The step response \(s[n]\) is the filter output when the input is a unit step \(u[n]\).

frequency_response(...) tuple[numpy.ndarray[Any, numpy.dtype[numpy.float64]], numpy.ndarray[Any, numpy.dtype[numpy.complex128]]]
frequency_response(freqs: float, ...) complex
frequency_response(freqs, ...) ndarray[Any, dtype[complex128]]

Returns the frequency response \(H(\omega)\) of the FIR filter.

group_delay(...) tuple[NDArray, NDArray]

Returns the group delay \(\tau_g(\omega)\) of the FIR filter.

phase_delay(...) tuple[NDArray, NDArray]

Returns the phase delay \(\tau_{\phi}(\omega)\) of the FIR filter.

Properties

property channels : float

The number of channels \(C\).

property method : 'kaiser' | 'custom'

The method used to design the polyphase channelizing filter.

property branches : int

The number of polyphase branches \(B\).

property taps : NDArray

The prototype feedforward taps \(h[n]\).

property polyphase_taps : NDArray

The polyphase feedforward taps \(h_i[n]\).

property order : int

The order \(N = (M + 1)B - 1\) of the FIR prototype filter \(h[n]\).

property polyphase_order : int

The order \(M = (N + 1)/B - 1\) of each FIR polyphase filter \(h_i[n]\).

property input : 'hold' | 'top-to-bottom' | 'bottom-to-top'

The input connection method.

property output : 'sum' | 'top-to-bottom' | 'bottom-to-top' | 'all'

The output connection method.

property interpolation : int

The integer interpolation rate \(P\).

property decimation : int

The integer decimation rate \(Q\).

property rate : float

The fractional resampling rate \(r = P/Q\). The output sample rate is \(f_{s,out} = f_{s,in} \cdot r\).

property delay : int

The delay of polyphase FIR filter in samples. The delay indicates the output sample index that corresponds to the first input sample.