- class sdr.Channelizer(sdr.PolyphaseFIR)
Implements a polyphase channelizer FIR filter.
Notes¶
The polyphase channelizer efficiently splits the input signal \(x[n]\) with sample rate \(f_s\) into \(C\) equally-spaced channels. Each channel has a bandwidth of \(f_s / C\).
The polyphase channelizer is equivalent to first mixing the input signal \(x[n]\) with \(C\) complex exponentials with frequencies \(f_i = -i \cdot f_s / C\), filtering the mixed signals with the prototype FIR filter with feedforward coefficients \(h[n]\), and then downsampling the filtered signals by \(C\) (by discarding \(C-1\) samples every \(C\) samples).
Instead, the polyphase channelizer first decomposes the prototype FIR filter into \(C\) polyphase filters with feedforward coefficients \(h_i[n]\). The polyphase filters are then applied to the commutated input signal \(x[n]\) in parallel. The outputs of the polyphase filters are then inverse Discrete Fourier transformed (IDFT) to produce the \(C\) channelized output signals \(y_i[n]\).
+------+ +------------------------+ | | ..., x[6], x[3], x[0] -->| h[0], h[3], h[6], h[9] |-->| |--> ..., y[0,1], y[0,0] +------------------------+ | | +------------------------+ | | ..., x[5], x[2], 0 -->| h[1], h[4], h[7], 0 |-->| IDFT |--> ..., y[1,1], y[1,0] +------------------------+ | | +------------------------+ | | ..., x[4], x[1], 0 -->| h[2], h[5], h[8], 0 |-->| |--> ..., y[2,1], y[2,0] +------------------------+ | | +------+ Input Commutator Parallel Outputs (bottom-to-top) x[n] = Input signal with sample rate fs y[i,n] = Channel i output signal with sample rate fs / C h[n] = Prototype FIR filter
The polyphase feedforward taps \(h_i[n]\) are related to the prototype feedforward taps \(h[n]\) by
\[h_i[j] = h[i + j C] .\]References¶
fred harris, Multirate Signal Processing for Communication Systems, Chapter 6.1: Channelizer.
Examples¶
Create a channelizer with 10 channels.
In [1]: C = 10 In [2]: channelizer = sdr.Channelizer(C); channelizer Out[2]: sdr.Channelizer(10, 'kaiser', streaming=False)
Create an input signal. Each channel has a tone with increasing frequency. The amplitude of each tone also increases by 2 dB for each channel.
In [3]: x = np.random.randn(10_000) + 1j * np.random.randn(10_000) In [4]: for i in range(C): ...: x += sdr.linear(10 + 2 * i) * np.exp(1j * 2 * np.pi * (i + 0.25 / C * i) / C * np.arange(10_000)) ...:
Plot the input signal and overlay the channel boundaries. Note, Channel 5 is centered at \(f = 0.5\). So, it wraps from positive to negative frequencies.
In [5]: plt.figure(); \ ...: sdr.plot.periodogram(x, fft=1024, color="k", label="Input $x[n]$"); ...: In [6]: for i in range(C): ...: f_start = (i - 0.5) / C ...: f_stop = (i + 0.5) / C ...: if f_start > 0.5: ...: f_start -= 1 ...: f_stop -= 1 ...: plt.fill_betweenx([0, 80], f_start, f_stop, alpha=0.2, label=f"Channel {i}") ...: In [7]: plt.xticks(np.arange(-0.5, 0.6, 0.1)); \ ...: plt.legend(); \ ...: plt.title("Input signals spread across 10 channels"); ...:
Channelize the input signal with sample rate \(f_s\) into 10 channels, each with sample rate \(f_s / 10\).
In [8]: Y = channelizer(x) In [9]: x.shape, Y.shape Out[9]: ((10000,), (10, 1001))
In [10]: plt.figure(); In [11]: for i in range(C): ....: sdr.plot.periodogram(Y[i, :], fft=1024, label=f"Channel {i}") ....: In [12]: plt.xticks(np.arange(-0.5, 0.6, 0.1)); \ ....: plt.title("Output signals from 10 channels"); ....:
Constructors¶
- Channelizer(channels: int, ...)
Creates a polyphase FIR channelizing filter.
Special methods¶
-
__call__(x: ArrayLike, mode: 'rate' | 'full' =
'rate'
) NDArray Channelizes the input signal \(x[n]\) with the polyphase FIR filter.
Streaming mode only¶
- reset()
Resets the filter state. Only useful when using streaming mode.
- flush() NDArray
Flushes the filter state by passing zeros through the filter. Only useful when using streaming mode.
- property state : NDArray
The filter state consisting of the previous \(N\) inputs.
Methods¶
-
impulse_response(N: int | None =
None
) NDArray Returns the impulse response \(h[n]\) of the FIR filter. The impulse response \(h[n]\) is the filter output when the input is an impulse \(\delta[n]\).
-
step_response(N: int | None =
None
) NDArray Returns the step response \(s[n]\) of the FIR filter. The step response \(s[n]\) is the filter output when the input is a unit step \(u[n]\).
- frequency_response(...) tuple[numpy.ndarray[Any, numpy.dtype[numpy.float64]], numpy.ndarray[Any, numpy.dtype[numpy.complex128]]]
- frequency_response(freqs: float, ...) complex
- frequency_response(freqs, ...) ndarray[Any, dtype[complex128]]
Returns the frequency response \(H(\omega)\) of the FIR filter.
- group_delay(...) tuple[NDArray, NDArray]
Returns the group delay \(\tau_g(\omega)\) of the FIR filter.
- phase_delay(...) tuple[NDArray, NDArray]
Returns the phase delay \(\tau_{\phi}(\omega)\) of the FIR filter.
Properties¶
- property method : 'kaiser' | 'custom'
The method used to design the polyphase channelizing filter.
- property taps : NDArray
The prototype feedforward taps \(h[n]\).
- property polyphase_taps : NDArray
The polyphase feedforward taps \(h_i[n]\).
- property polyphase_order : int
The order \(M = (N + 1)/B - 1\) of each FIR polyphase filter \(h_i[n]\).
- property input : 'hold' | 'top-to-bottom' | 'bottom-to-top'
The input connection method.
- property output : 'sum' | 'top-to-bottom' | 'bottom-to-top' | 'all'
The output connection method.
- property interpolation : int
The integer interpolation rate \(P\).
- property decimation : int
The integer decimation rate \(Q\).
- property rate : float
The fractional resampling rate \(r = P/Q\). The output sample rate is \(f_{s,out} = f_{s,in} \cdot r\).
- property delay : int
The delay of polyphase FIR filter in samples. The delay indicates the output sample index that corresponds to the first input sample.