Phase-locked loops¶
import matplotlib.pyplot as plt
import numpy as np
import sdr
%config InlineBackend.print_figure_kwargs = {"facecolor" : "w"}
%matplotlib inline
# %matplotlib widget
Design a proportional-plus-integrator (PPI) loop filter¶
A 2nd order, proportional-plus-integrator loop filter has the following configuration.
+----+
+-->| K1 |-------------------+
| +----+ |
x[n] --+ @--> y[n]
| +----+ |
+-->| K2 |--@-------------+--+
+----+ ^ |
| +------+ |
+--| z^-1 |<--+
+------+
x[n] = Input signal
y[n] = Output signal
K1 = Proportional gain
K2 = Integral gain
z^-1 = Unit delay
@ = Adder
The transfer function of the loop filter is
\[H(z) = K_1 + K_2 \frac{ 1 }{ 1 - z^{-1}} = \frac{(K_1 + K_2) - K_1 z^{-1}}{1 - z^{-1}} .\]
These loop filters are implemented in sdr.LoopFilter
.
loop_filter = sdr.LoopFilter(0.05, 1)
print(loop_filter)
<sdr.LoopFilter object at 0x7fce0c4bd1d0>
plt.figure(figsize=(10, 5))
sdr.plot.magnitude_response(loop_filter.iir, x_axis="log", decades=6)
plt.show()

Implement a PLL in the phase domain¶
This section implements Example C.2.1 from Digital Communications: A Discrete-Time Approach.
N = 75 # samples
theta_0 = 2 * np.pi / 10 # radians/sample
x = theta_0 * np.arange(N) + np.pi # Input phase signal, radians
y = np.zeros(x.size) # Output phase signal, radians
phase_error = np.zeros(x.size) # Measured phase error, radians
freq_estimate = np.zeros(x.size + 1) # Estimated frequency, radians/sample
# Create a proportional-plus-integrator (PPI) loop filter with a normalized
# noise bandwidth of 0.05 and a damping factor of 1 (critically damped)
loop_filter = sdr.LoopFilter(0.05, 1)
# Create a numerically controlled oscillator (NCO) with NCO gain of 1,
# constant phase accumulation of theta_0 radians/sample, and initial phase
# offset of theta_0 radians.
nco = sdr.NCO(1, increment=theta_0)
for i in range(N):
# Process the variable phase increment through the NCO
y[i] = nco(freq_estimate[i], output="phase")
# Phase error detector (PED)
phase_error[i] = x[i] - y[i]
# Compute the frequency estimate
freq_estimate[i + 1] = loop_filter(phase_error[i])
plt.figure(figsize=(10, 6))
plt.subplot(2, 1, 1)
sdr.plot.time_domain(x, label="Input phase")
sdr.plot.time_domain(y, label="Output phase")
plt.grid(which="both", linestyle="--")
plt.ylabel("Phase (radians)")
plt.title("Input and output phase signals")
plt.subplot(2, 1, 2)
sdr.plot.time_domain(phase_error)
plt.grid(which="both", linestyle="--")
plt.ylabel("Phase (radians)")
plt.title("Phase error between input and output phase signals")
plt.suptitle("Figure C.2.5 from Digital Communications: A Discrete-Time Approach")
plt.tight_layout()
plt.show()

Implement a PLL in the time domain¶
This section implements Example C.2.1 from Digital Communications: A Discrete-Time Approach, but using time-domain signals.
N = 75 # samples
theta_0 = 2 * np.pi / 10 # radians/sample
x = np.exp(1j * (theta_0 * np.arange(N) + np.pi)) # Input signal
y = np.ones(x.size, dtype=complex) # Output signal
phase_error = np.zeros(x.size)
freq_estimate = np.zeros(x.size + 1)
# Create a numerically controlled oscillator (NCO) with NCO gain of 1,
# constant phase accumulation of theta_0 radians/sample, and initial phase
# offset of theta_0 radians.
nco = sdr.NCO(1, increment=theta_0)
# Create a heuristic phase error detector (PED).
ped = sdr.PED()
# Create a proportional-plus-integrator (PPI) loop filter with a normalized
# noise bandwidth of 0.05 and a damping factor of 1 (critically damped)
loop_filter = sdr.LoopFilter(0.05, 1, K0=nco.gain, Kp=ped.gain)
for i in range(N):
# Process the variable phase increment through the DDS
y[i] = nco(freq_estimate[i])
# Heuristic phase error detector (PED)
phase_error[i] = ped(x[i], y[i])
# Compute the frequency estimate
freq_estimate[i + 1] = loop_filter(phase_error[i])
plt.figure(figsize=(10, 8))
plt.subplot(3, 1, 1)
sdr.plot.time_domain(x.real, label="Input")
sdr.plot.time_domain(y.real, label="Output")
plt.grid(which="both", linestyle="--")
plt.ylabel("Amplitude")
plt.title("Input and output signals (real part only)")
plt.subplot(3, 1, 2)
sdr.plot.time_domain(phase_error)
plt.grid(which="both", linestyle="--")
plt.ylabel("Phase (radians)")
plt.title("Phase error between input and output signals")
plt.subplot(3, 1, 3)
sdr.plot.time_domain(np.unwrap(np.angle(x)), label="Input")
sdr.plot.time_domain(np.unwrap(np.angle(y)), label="Output")
plt.grid(which="both", linestyle="--")
plt.ylabel("Phase (radians)")
plt.title("Unwrapped phase of input and output signals")
plt.suptitle("Figure C.2.5 from Digital Communications: A Discrete-Time Approach")
plt.tight_layout()
plt.show()

This section implements Example 7.2.3 from Digital Communications: A Discrete-Time Approach.
N = 250 # symbols
qpsk = sdr.PSK(4, phase_offset=45)
a = qpsk.map_symbols(np.random.randint(0, 4, N)) # QPSK complex symbols
a *= np.exp(1j * np.pi / 4) # Rotate symbols by pi/4 radians
lo = np.ones(a.size, dtype=complex) # Local oscillator
a_tilde = np.ones(a.size, dtype=complex) # De-rotated symbols
phase_error = np.zeros(a.size)
freq_estimate = np.zeros(a.size + 1)
# Create a numerically controlled oscillator (NCO) with NCO gain of 1.
nco = sdr.NCO(1)
# Create a maximum-likelihood phase error detector (ML-PED).
ped = sdr.MLPED()
# Create a proportional-plus-integrator (PPI) loop filter with a normalized
# noise bandwidth of 0.05 and a damping factor of 1 (critically damped)
loop_filter = sdr.LoopFilter(0.02, 1 / np.sqrt(2), K0=nco.gain, Kp=ped.gain)
for i in range(N):
# Process the variable phase increment through the DDS
lo[i] = nco(freq_estimate[i])
# De-rotate the input symbols
a_tilde[i] = a[i] * lo[i].conj()
# Make a symbol decision
s_hat, a_hat = qpsk.decide_symbols(a_tilde[i])
# Maximum-likelihood phase error detector (ML-PED)
phase_error[i] = ped(a_tilde[i], a_hat)
# Compute the frequency estimate
freq_estimate[i + 1] = loop_filter(phase_error[i])
plt.figure(figsize=(10, 10))
plt.subplot(4, 1, 1)
sdr.plot.time_domain(a)
plt.title("Input symbols")
plt.subplot(4, 1, 2)
sdr.plot.time_domain(a_tilde)
plt.title("Output symbols (de-rotated)")
plt.subplot(4, 1, 3)
sdr.plot.time_domain(np.angle(lo, deg=True))
plt.grid(which="both", linestyle="--")
plt.ylabel("Phase (degrees)")
plt.title("Phase estimate of local oscillator")
plt.subplot(4, 1, 4)
sdr.plot.time_domain(np.rad2deg(phase_error))
plt.grid(which="both", linestyle="--")
plt.ylabel("Phase (degrees)")
plt.title("Phase error between input and output phase signals")
plt.suptitle("Figure 7.2.6 from Digital Communications: A Discrete-Time Approach")
plt.tight_layout()
plt.show()

Analyze PLL closed-loop performance¶
A closed-loop PLL has the following configuration.
bb[n] phase_err[n]
+---+ +-----+ +----+
x[n] -->| X |--->| PED |--->| LF |---+
+---+ +-----+ +----+ |
^ | phase_est[n]
| +-----+ |
lo[n] +------| NCO |<------------+
+-----+
x[n] = Input signal
lo[n] = Local oscillator signal
bb[n] = Baseband signal
PED = Phase error detector
LF = Loop filter
NCO = Numerically-controlled oscillator
The closed-loop transfer function of the PLL is
\[
H_{PLL}(z) = \frac{K_p K_0 (K_1 + K_2) z^{-1} - K_p K_0 K_1 z^{-2}}
{1 - 2 (1 - \frac{1}{2} K_p K_0 (K_1 + K_2) z^{-1} + (1 - K_p K_0 K_1) z^{-2} } .
\]
The analysis of the performance of this closed-loop system is available in sdr.ClosedLoopPLL
.
Compare step and frequency response across \(\zeta\)¶
plt.figure(figsize=(10, 5))
for zeta in [1 / 2, 1 / np.sqrt(2), 1, np.sqrt(2), 2]:
pll = sdr.ClosedLoopPLL(0.01, zeta)
sdr.plot.step_response(pll.iir, N=500, label=rf"$\zeta = {zeta}$")
plt.title("Step response of the closed-loop PLL across damping factor")
plt.show()

plt.figure(figsize=(10, 5))
for zeta in [1 / 2, 1 / np.sqrt(2), 1, np.sqrt(2), 2]:
pll = sdr.ClosedLoopPLL(0.01, zeta)
sdr.plot.magnitude_response(pll.iir, sample_rate=2 * np.pi / pll.omega_n, x_axis="log", label=rf"$\zeta = {zeta}$")
plt.xlim([10**-2, 10**2])
plt.ylim([-25, 5])
plt.xlabel(r"Normalized Frequency ($\omega / \omega_n$)")
plt.title("Frequency response of the closed-loop PLL across damping factor")
plt.show()

Compare step and frequency response across \(B_n T\)¶
plt.figure(figsize=(10, 5))
for BnT in [0.001, 0.005, 0.01, 0.05, 0.1]:
pll = sdr.ClosedLoopPLL(BnT, 1)
sdr.plot.step_response(pll.iir, N=500, label=f"$B_nT = {BnT}$")
plt.title("Step response of the closed-loop PLL across normalized noise bandwidth")
plt.show()

plt.figure(figsize=(10, 5))
for BnT in [0.001, 0.005, 0.01, 0.05, 0.1]:
pll = sdr.ClosedLoopPLL(BnT, 1)
sdr.plot.magnitude_response(pll.iir, x_axis="log", label=f"$B_nT = {BnT}$")
plt.ylim([-25, 5])
plt.title("Frequency response of the closed-loop PLL across normalized noise bandwidth")
plt.show()

Compare lock time across \(B_n T\)¶
freq = np.linspace(0, 0.0005, 100)
plt.figure(figsize=(10, 5))
for BnT in [0.01, 0.0125, 0.015, 0.0175, 0.02]:
pll = sdr.ClosedLoopPLL(BnT, 1)
t_lock = pll.lock_time(freq)
plt.plot(freq, t_lock, label=f"$B_nT = {BnT}$")
plt.grid(which="both", linestyle="--")
plt.legend()
plt.xlabel("Normalized frequency offset ($f / f_s$)")
plt.ylabel("Lock time (samples)")
plt.title("Lock time of the closed-loop PLL across input signal frequency offset")
plt.show()

Last update:
Jan 07, 2024