IIR filters

import numpy as np
import matplotlib.pyplot as plt

import sdr

%config InlineBackend.print_figure_kwargs = {"facecolor" : "w"}
%matplotlib inline
# %matplotlib widget

Create an IIR filter

The user creates an IIR filter with the sdr.IIR class by specifying the feedforward coefficients \(b_i\) and feedback coefficients \(a_j\). Alternatively, an IIR filter may be created by specifying the zeros and poles in sdr.IIR.ZerosPoles.

Below is an IIR filter with one real zero and two complex-conjugate poles.

zero = 0.6
pole = 0.8 * np.exp(1j * np.pi / 8)
iir = sdr.IIR.ZerosPoles([zero], [pole, pole.conj()])
print(iir)
sdr.IIR:
  order: 2
  b_taps: (2,) shape
    [1.0, -0.6]
  a_taps: (3,) shape
    [1.0, -1.478207252018059, 0.6400000000000001]
  zeros: (1,) shape
    [0.6]
  poles: (2,) shape
    [(0.7391036260090295+0.3061467458920719j), (0.7391036260090295-0.3061467458920719j)]
  streaming: False
print(f"Feedforward taps: {iir.b_taps}")
print(f"Feedback taps: {iir.a_taps}")
Feedforward taps: [ 1.  -0.6]
Feedback taps: [ 1.         -1.47820725  0.64      ]

Examine the impulse response, \(h[n]\)

The impulse response of the IIR filter is computed and returned from the sdr.IIR.impulse_response() method. The impulse response \(h[n]\) is the output of the filter when the input is an impulse \(\delta[n]\).

h = iir.impulse_response(30)
print(h)
[ 1.00000000e+00  8.78207252e-01  6.58172329e-01  4.10862468e-01
  1.86109590e-01  1.21565653e-02 -1.01140214e-01 -1.57286400e-01
 -1.67772160e-01 -1.47338728e-01 -1.10422993e-01 -6.89312837e-02
 -3.12240078e-02 -2.03953322e-03  1.69685122e-02  2.63882791e-02
  2.81474977e-02  2.47193366e-02  1.85259041e-02  1.15647504e-02
  5.23851924e-03  3.42176895e-04 -2.84684395e-03 -4.42721858e-03
 -4.72236648e-03 -4.14721649e-03 -3.10813095e-03 -1.94024315e-03
 -8.78877688e-04 -5.74077567e-05]

The impulse response is conveniently plotted using the sdr.plot.impulse_response() function.

plt.figure(figsize=(10, 5))
sdr.plot.impulse_response(iir, 30, marker=".")
plt.show()
../../_images/38c53aded2b52aa6410dbdc2884fcdaef93e3f74a5aaf98892228a7a1a5c90f9.png

Examine the step response, \(s[n]\)

The step response of the IIR filter is computed and returned from the sdr.IIR.step_response() method. The step response \(s[n]\) is the output of the filter when the input is a unit step \(u[n]\).

s = iir.step_response(30)
print(s)
[1.         1.87820725 2.53637958 2.94724205 3.13335164 3.1455082
 3.04436799 2.88708159 2.71930943 2.5719707  2.46154771 2.39261642
 2.36139242 2.35935288 2.3763214  2.40270968 2.43085717 2.45557651
 2.47410241 2.48566716 2.49090568 2.49124786 2.48840102 2.4839738
 2.47925143 2.47510421 2.47199608 2.47005584 2.46917696 2.46911955]

The step response is conveniently plotted using the sdr.plot.step_response() function.

plt.figure(figsize=(10, 5))
sdr.plot.step_response(iir, 30, marker=".")
plt.show()
../../_images/92265d5adcf984927edbd8c98604ae17e9310900bdc289102276f3850e968eb6.png

Examine the zeros and poles

Zeros are \(z\) values that set the numerator of \(H(z)\) to zero.

print(iir.zeros)
[0.6]

Poles are \(z\) values that set the denominator of \(H(z)\) to zero. The poles define the stability of the IIR filter.

print(iir.poles)
[0.73910363+0.30614675j 0.73910363-0.30614675j]

The zeros and poles are conveniently plotted in the complex plane using the sdr.plot.zeros_poles() function.

plt.figure(figsize=(5, 5))
sdr.plot.zeros_poles(iir)
plt.show()
../../_images/583dcba3c0dface4db9a25347dceb8e970e048876ada13fa904f5b0bad8b7981.png

Examine the frequency response, \(H(\omega)\)

The frequency response is the transfer function \(H(z)\) evaluated at the complex exponential \(e^{j \omega}\), where \(\omega = 2 \pi f / f_s\).

The two-sided frequency response is conveniently plotted using the sdr.plot.magnitude_response() function.

plt.figure(figsize=(10, 5))
sdr.plot.magnitude_response(iir)
plt.show()
../../_images/a0e8343a89abaa93109363281b8860c0d36d0b8bc030036da9cf2861b5d876e5.png

The one-sided frequency response, with logarithmic scale, can be plotted using the x_axis="log" keyword argument.

plt.figure(figsize=(10, 5))
sdr.plot.magnitude_response(iir, x_axis="log")
plt.show()
../../_images/71e43759ac8ef6fa4973dc7a7e27c5fbe6a0b49f7fbc545e06cab6bf7032edde.png

Examine the group delay, \(\tau_g(\omega)\)

The group delay \(\tau_g(\omega)\) is the time shift of the envelope of a signal passed through the filter as a function of its frequency \(\omega\).

The group delay is conveniently plotted using the sdr.plot.group_delay() function.

plt.figure(figsize=(10, 5))
sdr.plot.group_delay(iir)
plt.show()
../../_images/b3526a827b7a3f670c95e3fffda5056d42cb8053f64b50272b1d6b6141ea6231.png
plt.figure(figsize=(10, 5))
sdr.plot.group_delay(iir, x_axis="log")
plt.show()
../../_images/be857cd8bf0ae32feab65b8813eeb5513264e9f372a517992f426385404632bb.png

Fully analyze an IIR filter

The user can easily analyze the perform of a given IIR filter using the sdr.plot.filter() function.

Here is an IIR filter with one real zero and 8 complex poles.

zeros = np.array([0.8])
poles = 0.6 * np.exp(1j * np.linspace(np.pi / 8, np.pi / 4, 4, endpoint=False))
poles = np.concatenate((poles, poles.conj()))
iir = sdr.IIR.ZerosPoles(zeros, poles)
print(iir)
sdr.IIR:
  order: 8
  b_taps: (2,) shape
    [1.0, -0.8]
  a_taps: (9,) shape
    [1.0, -4.092337035029908, 7.71104892744724, -8.684365018955985, 6.37868538208862, -3.1263714068241546, 0.9993519409971622, -0.1909320767063554, 0.016796159999999997]
  zeros: (1,) shape
    [0.8]
  poles: (8,) shape
    [(0.46380627201816593+0.3806359704987265j), (0.46380627201816593-0.3806359704987265j), (0.4988817673791569+0.3333421398098428j), (0.4988817673791569-0.3333421398098428j), (0.5543277195052645+0.22961005941814036j), (0.5543277195052645-0.22961005941814036j), (0.5291527586123693+0.28283804209787544j), (0.5291527586123693-0.28283804209787544j)]
  streaming: False
plt.figure(figsize=(10, 8))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/532da920be647ac8f31e3db5f68ee87aa3f13fac0838785735781ead96af7d57.png

Poles and digital filter stability

Reference:

  • R. Lyons, Understanding Digital Signal Processing 3rd Edition, Section 6.3.1.

When the pole is real and inside the unit circle, the impulse response \(h[n]\) is an exponential decay.

zeros = []
poles = [0.8]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(10, 8))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/d4af45f7690bedbd88b81180bc4ea834bfdaca0098191ec88addb48f471bc550.png

When the poles are complex conjugates and inside the unit circle, the impulse response \(h[n]\) is a decaying sinusoid.

zeros = []
pole = 0.8 * np.exp(1j * np.pi / 8)
poles = [pole, pole.conj()]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(10, 8))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/2e689c60ad3e1e0fd6c9ca176c5cde29237919d6d3d6eb261c8c9f2e8eefe31e.png

When the pole is real and on the unit circle, the impulse response \(h[n]\) is constant. This filter is an integrator.

zeros = []
poles = [1]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(10, 8))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/cee48038313c26526a341224c0fcaea22d192883fcd7dcbf4c790f5008216a1e.png

When the poles are complex conjugates and on the unit circle, the impulse response \(h[n]\) is a sinusoid.

zeros = []
pole = 1 * np.exp(1j * np.pi / 8)
poles = [pole, pole.conj()]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(10, 8))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/42a095f3745dc94268f5db054fc5c703ccc813762071c21806963cd0884f413b.png

When the pole is real and outside the unit circle, the impulse response \(h[n]\) is an exponential. This filter is unstable.

zeros = []
poles = [1.2]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(10, 8))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/50a4e0bd052959239df280ea7e1d15f11f863225d7121254f7a75e2f20b233b5.png

When the poles are complex conjugates and outside the unit circle, the impulse response \(h[n]\) is an exponentially-increasing sinusoid. This filter is unstable.

zeros = []
pole = 1.2 * np.exp(1j * np.pi / 8)
poles = [pole, pole.conj()]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(10, 8))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/6987c645289cf07dc38fd80e66d3869538d0bdc60ceab78bff502860d64b9cd6.png

Last update: Dec 06, 2023