IIR filters

import numpy as np
import matplotlib.pyplot as plt

import sdr

%config InlineBackend.print_figure_kwargs = {"facecolor" : "w"}
%matplotlib inline
# %matplotlib widget

sdr.plot.use_style()

Create an IIR filter

The user creates an IIR filter with the sdr.IIR class by specifying the feedforward coefficients \(b_i\) and feedback coefficients \(a_j\). Alternatively, an IIR filter may be created by specifying the zeros and poles in sdr.IIR.ZerosPoles.

Below is an IIR filter with one real zero and two complex-conjugate poles.

zero = 0.6
pole = 0.8 * np.exp(1j * np.pi / 8)
iir = sdr.IIR.ZerosPoles([zero], [pole, pole.conj()])
print(iir)
sdr.IIR:
  order: 2
  b_taps: (2,) shape
    [1.0, -0.6]
  a_taps: (3,) shape
    [1.0, -1.478207252018059, 0.6400000000000001]
  zeros: (1,) shape
    [0.6]
  poles: (2,) shape
    [(0.7391036260090295+0.3061467458920719j), (0.7391036260090295-0.3061467458920719j)]
  streaming: False
print(f"Feedforward taps: {iir.b_taps}")
print(f"Feedback taps: {iir.a_taps}")
Feedforward taps: [ 1.  -0.6]
Feedback taps: [ 1.         -1.47820725  0.64      ]

Examine the impulse response, \(h[n]\)

The impulse response of the IIR filter is computed and returned from the sdr.IIR.impulse_response() method. The impulse response \(h[n]\) is the output of the filter when the input is an impulse \(\delta[n]\).

h = iir.impulse_response(30)
print(h)
[ 1.00000000e+00  8.78207252e-01  6.58172329e-01  4.10862468e-01
  1.86109590e-01  1.21565653e-02 -1.01140214e-01 -1.57286400e-01
 -1.67772160e-01 -1.47338728e-01 -1.10422993e-01 -6.89312837e-02
 -3.12240078e-02 -2.03953322e-03  1.69685122e-02  2.63882791e-02
  2.81474977e-02  2.47193366e-02  1.85259041e-02  1.15647504e-02
  5.23851924e-03  3.42176895e-04 -2.84684395e-03 -4.42721858e-03
 -4.72236648e-03 -4.14721649e-03 -3.10813095e-03 -1.94024315e-03
 -8.78877688e-04 -5.74077567e-05]

The impulse response is conveniently plotted using the sdr.plot.impulse_response() function.

plt.figure()
sdr.plot.impulse_response(iir, 30)
plt.show()
../../_images/f23801b39c35c74281dfa31b1272e73104a37c7c8da7e83027ee16a6707fbd4f.png

Examine the step response, \(s[n]\)

The step response of the IIR filter is computed and returned from the sdr.IIR.step_response() method. The step response \(s[n]\) is the output of the filter when the input is a unit step \(u[n]\).

s = iir.step_response(30)
print(s)
[1.         1.87820725 2.53637958 2.94724205 3.13335164 3.1455082
 3.04436799 2.88708159 2.71930943 2.5719707  2.46154771 2.39261642
 2.36139242 2.35935288 2.3763214  2.40270968 2.43085717 2.45557651
 2.47410241 2.48566716 2.49090568 2.49124786 2.48840102 2.4839738
 2.47925143 2.47510421 2.47199608 2.47005584 2.46917696 2.46911955]

The step response is conveniently plotted using the sdr.plot.step_response() function.

plt.figure()
sdr.plot.step_response(iir, 30)
plt.show()
../../_images/459193f8cc54fcb65be3d827ea64b2de8fbede9bba50777a2cd8bae1e34062fc.png

Examine the zeros and poles

Zeros are \(z\) values that set the numerator of \(H(z)\) to zero.

print(iir.zeros)
[0.6]

Poles are \(z\) values that set the denominator of \(H(z)\) to zero. The poles define the stability of the IIR filter.

print(iir.poles)
[0.73910363+0.30614675j 0.73910363-0.30614675j]

The zeros and poles are conveniently plotted in the complex plane using the sdr.plot.zeros_poles() function.

plt.figure()
sdr.plot.zeros_poles(iir)
plt.show()
../../_images/05b3c50ff93047737387a1dc8648df1d503bc78c40726b48bfabaab3f172f1ed.png

Examine the frequency response, \(H(\omega)\)

The frequency response is the transfer function \(H(z)\) evaluated at the complex exponential \(e^{j \omega}\), where \(\omega = 2 \pi f / f_s\).

The two-sided frequency response is conveniently plotted using the sdr.plot.magnitude_response() function.

plt.figure()
sdr.plot.magnitude_response(iir)
plt.show()
../../_images/42d6208e546e6e58da6effddbf3a7d7a64557908f9c3fea2cb43a4f0b4e01ccc.png

The one-sided frequency response, with logarithmic scale, can be plotted using the x_axis="log" keyword argument.

plt.figure()
sdr.plot.magnitude_response(iir, x_axis="log")
plt.show()
../../_images/780883628c85071afc283ca2589b165bf11e55b0ba60c7e8390f8f09bce442dd.png

Examine the group delay, \(\tau_g(\omega)\)

The group delay \(\tau_g(\omega)\) is the time shift of the envelope of a signal passed through the filter as a function of its frequency \(\omega\).

The group delay is conveniently plotted using the sdr.plot.group_delay() function.

plt.figure()
sdr.plot.group_delay(iir)
plt.show()
../../_images/a4b78ba761fa777e181826a60b4e260c1e4d15686f9a36f32ea20a88f97f1d86.png
plt.figure()
sdr.plot.group_delay(iir, x_axis="log")
plt.show()
../../_images/16c9e8b38b57cb647717116f4315365ef9a7b9ddf2789c53cabf13d71c361206.png

Fully analyze an IIR filter

The user can easily analyze the perform of a given IIR filter using the sdr.plot.filter() function.

Here is an IIR filter with one real zero and 8 complex poles.

zeros = np.array([0.8])
poles = 0.6 * np.exp(1j * np.linspace(np.pi / 8, np.pi / 4, 4, endpoint=False))
poles = np.concatenate((poles, poles.conj()))
iir = sdr.IIR.ZerosPoles(zeros, poles)
print(iir)
sdr.IIR:
  order: 8
  b_taps: (2,) shape
    [1.0, -0.8]
  a_taps: (9,) shape
    [1.0, -4.092337035029908, 7.71104892744724, -8.684365018955985, 6.37868538208862, -3.1263714068241546, 0.9993519409971622, -0.1909320767063554, 0.016796159999999997]
  zeros: (1,) shape
    [0.8]
  poles: (8,) shape
    [(0.46380627201816593+0.3806359704987265j), (0.46380627201816593-0.3806359704987265j), (0.4988817673791569+0.3333421398098428j), (0.4988817673791569-0.3333421398098428j), (0.5543277195052645+0.22961005941814036j), (0.5543277195052645-0.22961005941814036j), (0.5291527586123693+0.28283804209787544j), (0.5291527586123693-0.28283804209787544j)]
  streaming: False
plt.figure(figsize=(8, 6))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/8e7b0dd4d4f59ae5755220d9508057efca6a6f113acc0c42f4ae3ddab8e85bc3.png

Poles and digital filter stability

Reference:

  • R. Lyons, Understanding Digital Signal Processing 3rd Edition, Section 6.3.1.

When the pole is real and inside the unit circle, the impulse response \(h[n]\) is an exponential decay.

zeros = []
poles = [0.8]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(8, 6))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/ccb69da0b6ef034dc3309f8bae668d2b1517c53220470c0b0642ea383f4384db.png

When the poles are complex conjugates and inside the unit circle, the impulse response \(h[n]\) is a decaying sinusoid.

zeros = []
pole = 0.8 * np.exp(1j * np.pi / 8)
poles = [pole, pole.conj()]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(8, 6))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/8027a5a008451fcb6b4e0870f0e194499061c3b3d4b53d7cbd7f156e4e6c9dbc.png

When the pole is real and on the unit circle, the impulse response \(h[n]\) is constant. This filter is an integrator.

zeros = []
poles = [1]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(8, 6))
sdr.plot.filter(iir, N_time=30)
plt.show()
/home/matt/repos/sdr/.venv/lib/python3.11/site-packages/scipy/signal/_filter_design.py:478: RuntimeWarning: divide by zero encountered in divide
  h = (npp_polyval(zm1, b, tensor=False) /
/home/matt/repos/sdr/.venv/lib/python3.11/site-packages/scipy/signal/_filter_design.py:478: RuntimeWarning: invalid value encountered in divide
  h = (npp_polyval(zm1, b, tensor=False) /
../../_images/0cd620bb27dbd0e3983cbea43b82d3d2dc6e8ea7407b56a5479b17be0c95ef42.png

When the poles are complex conjugates and on the unit circle, the impulse response \(h[n]\) is a sinusoid.

zeros = []
pole = 1 * np.exp(1j * np.pi / 8)
poles = [pole, pole.conj()]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(8, 6))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/2c1d4965dfd2670d3767020f38134d93f02d2a62219a70e46a179c0f47d6d763.png

When the pole is real and outside the unit circle, the impulse response \(h[n]\) is an exponential. This filter is unstable.

zeros = []
poles = [1.2]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(8, 6))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/8161182ddd8bb7cc2b6942b33f5026da99d8ccd8a6e10577b0e0788ae52e6e0f.png

When the poles are complex conjugates and outside the unit circle, the impulse response \(h[n]\) is an exponentially-increasing sinusoid. This filter is unstable.

zeros = []
pole = 1.2 * np.exp(1j * np.pi / 8)
poles = [pole, pole.conj()]
iir = sdr.IIR.ZerosPoles(zeros, poles)

plt.figure(figsize=(8, 6))
sdr.plot.filter(iir, N_time=30)
plt.show()
../../_images/2f9a9a52b8e1369134fda6fe597946d6304cdc17fc2f2928aa59c740cc17d19d.png

Last update: Jun 15, 2024