-
sdr.sum_distribution(X: rv_continuous | rv_histogram, n_terms: int, p: float =
1e-16
) rv_histogram Numerically calculates the distribution of the sum of \(n\) i.i.d. random variables \(X_i\).
- Parameters:¶
- X: rv_continuous | rv_histogram¶
The distribution of the i.i.d. random variables \(X_i\).
- n_terms: int¶
The number \(n\) of random variables to sum.
- p: float =
1e-16
¶ The probability of exceeding the x axis, on either side, for each distribution. This is used to determine the bounds on the x axis for the numerical convolution. Smaller values of \(p\) will result in more accurate analysis, but will require more computation.
- Returns:¶
The distribution of the sum \(Z = X_1 + X_2 + \ldots + X_n\).
Notes
The PDF of the sum of \(n\) independent random variables is the convolution of the PDF of the base distribution.
\[f_{X_1 + X_2 + \ldots + X_n}(t) = (f_X * f_X * \ldots * f_X)(t)\]Examples
Compute the distribution of the sum of two normal distributions.
In [1]: X = scipy.stats.norm(loc=-1, scale=0.5) In [2]: n_terms = 2 In [3]: x = np.linspace(-6, 2, 1_001) In [4]: plt.figure(); \ ...: plt.plot(x, X.pdf(x), label="X"); \ ...: plt.plot(x, sdr.sum_distribution(X, n_terms).pdf(x), label="X + X"); \ ...: plt.hist(X.rvs((100_000, n_terms)).sum(axis=1), bins=101, density=True, histtype="step", label="X + X empirical"); \ ...: plt.legend(); \ ...: plt.xlabel("Random variable"); \ ...: plt.ylabel("Probability density"); \ ...: plt.title("Sum of two Normal distributions"); ...:
Compute the distribution of the sum of three Rayleigh distributions.
In [5]: X = scipy.stats.rayleigh(scale=1) In [6]: n_terms = 3 In [7]: x = np.linspace(0, 10, 1_001) In [8]: plt.figure(); \ ...: plt.plot(x, X.pdf(x), label="X"); \ ...: plt.plot(x, sdr.sum_distribution(X, n_terms).pdf(x), label="X + X + X"); \ ...: plt.hist(X.rvs((100_000, n_terms)).sum(axis=1), bins=101, density=True, histtype="step", label="X + X + X empirical"); \ ...: plt.legend(); \ ...: plt.xlabel("Random variable"); \ ...: plt.ylabel("Probability density"); \ ...: plt.title("Sum of three Rayleigh distributions"); ...:
Compute the distribution of the sum of four Rician distributions.
In [9]: X = scipy.stats.rice(2) In [10]: n_terms = 4 In [11]: x = np.linspace(0, 18, 1_001) In [12]: plt.figure(); \ ....: plt.plot(x, X.pdf(x), label="X"); \ ....: plt.plot(x, sdr.sum_distribution(X, n_terms).pdf(x), label="X + X + X + X"); \ ....: plt.hist(X.rvs((100_000, n_terms)).sum(axis=1), bins=101, density=True, histtype="step", label="X + X + X + X empirical"); \ ....: plt.legend(); \ ....: plt.xlabel("Random variable"); \ ....: plt.ylabel("Probability density"); \ ....: plt.title("Sum of four Rician distributions"); ....: