-
sdr.multiply_rvs(X: scipy.stats.rv_continuous | scipy.stats.rv_histogram, Y: scipy.stats.rv_continuous | scipy.stats.rv_histogram, z: ArrayLike | None =
None
, p: float =1e-10
) scipy.stats.rv_histogram Numerically calculates the distribution of the product of two independent random variables \(X\) and \(Y\).
- Parameters:¶
- X: scipy.stats.rv_continuous | scipy.stats.rv_histogram¶
The distribution of the random variable \(X\).
- Y: scipy.stats.rv_continuous | scipy.stats.rv_histogram¶
The distribution of the random variable \(Y\).
- z: ArrayLike | None =
None
¶ The \(z\) values at which to evaluate the PDF of \(Z\). If None, the \(z\) values are determined based on
p
.- p: float =
1e-10
¶ The probability of exceeding the x axis, on either side, for each distribution. This is used to determine the bounds on the x axis for the numerical convolution. Smaller values of \(p\) will result in more accurate analysis, but will require more computation.
- Returns:¶
The distribution of the product \(Z = X \cdot Y\).
Notes
Given two independent random variables \(X\) and \(Y\) with PDFs \(f_X(x)\) and \(f_Y(y)\), and CDFs \(F_X(x)\) and \(F_Y(y)\), we compute the PDF of \(Z = X \cdot Y\) as follows.
The PDF of \(Z\), denoted \(f_Z(z)\), can be derived using the joint distribution of \(X\) and \(Y\). Since \(Z = X \cdot Y\), we express the relationship between \(x\), \(y\), and \(z\) and use a transformation approach.
Let \(Z = X \cdot Y\). The PDF \(f_Z(z)\) is given by
\[f_Z(z) = \int_{-\infty}^\infty \frac{1}{\left| w \right|} f_X\left(\frac{z}{w}\right) f_Y(w) \, dw\]The Jacobian adjustment for this transformation contributes the factor \(\frac{1}{\left| w \right|}\).
Examples
Compute the distribution of the product of two normal random variables.
In [1]: X = scipy.stats.norm(loc=-1, scale=0.5) In [2]: Y = scipy.stats.norm(loc=2, scale=1.5) In [3]: x = np.linspace(-15, 10, 1_001) In [4]: plt.figure(); \ ...: plt.plot(x, X.pdf(x), label="X"); \ ...: plt.plot(x, Y.pdf(x), label="Y"); \ ...: plt.plot(x, sdr.multiply_rvs(X, Y).pdf(x), label=r"$X \cdot Y$"); \ ...: plt.hist(X.rvs(100_000) * Y.rvs(100_000), bins=101, density=True, histtype="step", label=r"$X \cdot Y$ empirical"); \ ...: plt.legend(); \ ...: plt.xlabel("Random variable"); \ ...: plt.ylabel("Probability density"); \ ...: plt.title("Product of two normal random variables"); ...: