-
sdr.add_iid_rvs(X: rv_continuous | rv_histogram, n_vars: int, p: float =
1e-16
) rv_histogram Numerically calculates the distribution of the sum of \(n\) i.i.d. random variables \(X_i\).
- Parameters:¶
- X: rv_continuous | rv_histogram¶
The distribution of the i.i.d. random variables \(X_i\).
- n_vars: int¶
The number \(n\) of random variables.
- p: float =
1e-16
¶ The probability of exceeding the x axis, on either side, for each distribution. This is used to determine the bounds on the x axis for the numerical convolution. Smaller values of \(p\) will result in more accurate analysis, but will require more computation.
- Returns:¶
The distribution of the sum \(Z = X_1 + X_2 + \dots + X_n\).
Notes
Given a random variable \(X\) with PDF \(f_X(x)\), we compute the PDF of \(Z = X_1 + X_2 + \dots + X_n\), where \(X_1, X_2, \dots, X_n\) are independent and identically distributed (i.i.d.), as follows.
The PDF of \(Z\), denoted \(f_Z(z)\), can be obtained by using the convolution formula for independent random variables. Specifically, the PDF of the sum of \(n\) i.i.d. random variables is given by the \(n\)-fold convolution of the PDF of \(X\) with itself.
For \(n = 2\), \(Z = X_1 + X_2\). The PDF of \(Z\) is
\[f_Z(z) = \int_{-\infty}^\infty f_X(x) f_X(z - x) \, dx\]For \(n > 2\), the PDF of \(Z = X_1 + X_2 + \dots + X_n\) is computed recursively
\[f_Z(z) = \int_{-\infty}^\infty f_X(x) f_{Z_{n-1}}(z - x) \, dx\]where \(f_{Z_{n-1}}(z)\) is the PDF of the sum of \(n-1\) random variables.
For large \(n\), the Central Limit Theorem may be used as an approximation. If \(X_i\) have mean \(\mu\) and variance \(\sigma^2\), then \(Z\) approximately follows \(Z \sim \mathcal{N}(n\mu, n\sigma^2)\) for sufficiently large \(n\).
Examples
Compute the distribution of the sum of two normal random variables.
In [1]: X = scipy.stats.norm(loc=-1, scale=0.5) In [2]: n_vars = 2 In [3]: x = np.linspace(-6, 2, 1_001) In [4]: plt.figure(); \ ...: plt.plot(x, X.pdf(x), label="X"); \ ...: plt.plot(x, sdr.add_iid_rvs(X, n_vars).pdf(x), label="$X_1 + X_2$"); \ ...: plt.hist(X.rvs((100_000, n_vars)).sum(axis=1), bins=101, density=True, histtype="step", label="$X_1 + X_2$ empirical"); \ ...: plt.legend(); \ ...: plt.xlabel("Random variable"); \ ...: plt.ylabel("Probability density"); \ ...: plt.title("Sum of two normal random variables"); ...:
Compute the distribution of the sum of three Rayleigh random variables.
In [5]: X = scipy.stats.rayleigh(scale=1) In [6]: n_vars = 3 In [7]: x = np.linspace(0, 10, 1_001) In [8]: plt.figure(); \ ...: plt.plot(x, X.pdf(x), label="X"); \ ...: plt.plot(x, sdr.add_iid_rvs(X, n_vars).pdf(x), label="$X_1 + X_2 + X_3$"); \ ...: plt.hist(X.rvs((100_000, n_vars)).sum(axis=1), bins=101, density=True, histtype="step", label="$X_1 + X_2 + X_3$ empirical"); \ ...: plt.legend(); \ ...: plt.xlabel("Random variable"); \ ...: plt.ylabel("Probability density"); \ ...: plt.title("Sum of three Rayleigh random variables"); ...:
Compute the distribution of the sum of four Rician random variables.
In [9]: X = scipy.stats.rice(2) In [10]: n_vars = 4 In [11]: x = np.linspace(0, 18, 1_001) In [12]: plt.figure(); \ ....: plt.plot(x, X.pdf(x), label="X"); \ ....: plt.plot(x, sdr.add_iid_rvs(X, n_vars).pdf(x), label="$X_1 + X_2 + X_3 + X_4$"); \ ....: plt.hist(X.rvs((100_000, n_vars)).sum(axis=1), bins=101, density=True, histtype="step", label="$X_1 + X_2 + X_3 + X_4$ empirical"); \ ....: plt.legend(); \ ....: plt.xlabel("Random variable"); \ ....: plt.ylabel("Probability density"); \ ....: plt.title("Sum of four Rician random variables"); ....: