Miscellaneous

Probability

sdr.Q(x: ArrayLike) NDArray[float64]

Computes the CCDF of the standard normal distribution \(\mathcal{N}(0, 1)\)..

sdr.Qinv(p: ArrayLike) NDArray[float64]

Computes the inverse CCDF of the standard normal distribution \(\mathcal{N}(0, 1)\).

sdr.add_iid_rvs(X, ...) rv_histogram

Numerically calculates the distribution of the sum of \(n\) i.i.d. random variables \(X_i\).

sdr.add_rvs(X: rv_continuous | rv_histogram, Y, ...) rv_histogram

Numerically calculates the distribution of the sum of two independent random variables \(X\) and \(Y\).

sdr.subtract_rvs(X, ...) rv_histogram

Numerically calculates the distribution of the difference of two independent random variables \(X\) and \(Y\).

sdr.multiply_rvs(X, ...) scipy.stats.rv_histogram

Numerically calculates the distribution of the product of two independent random variables \(X\) and \(Y\).

sdr.min_iid_rvs(X, ...) rv_histogram

Numerically calculates the distribution of the minimum of \(n\) i.i.d. random variables \(X_i\).

sdr.max_iid_rvs(X, ...) rv_histogram

Numerically calculates the distribution of the maximum of \(n\) i.i.d. random variables \(X_i\).

Data manipulation

sdr.pack(x: ArrayLike, bpe: int, ...) NDArray[int_]

Packs a binary array into an array with multiple bits per element.

sdr.unpack(x: ArrayLike, bpe: int, ...) NDArray[int_]

Unpacks an array with multiple bits per element into a binary array.

sdr.hexdump(data: ArrayLike | bytes, width: int = 16) str

Returns a hexdump of the specified data.


Last update: Mar 09, 2024