Detection¶
Detectors¶
- class sdr.ReplicaCorrelator
Implements an clairvoyant replica-correlator detector.
- class sdr.EnergyDetector
Implements an energy detector.
Theoretical performance¶
-
sdr.h0(sigma2: float =
1.0
, ...) rv_continuous Computes the statistical distribution under the null hypothesis \(\mathcal{H}_0\).
-
sdr.h1(snr: float, sigma2: float =
1.0
, ...) rv_continuous Computes the statistical distribution under the alternative hypothesis \(\mathcal{H}_1\).
- sdr.p_d(snr: ArrayLike, p_fa: ArrayLike, ...) NDArray[float64]
Computes the theoretical probability of detection \(P_d\).
- sdr.p_fa(threshold: ArrayLike, ...) NDArray[float64]
Computes the theoretical probability of false alarm \(P_{fa}\).
- sdr.threshold(p_fa: ArrayLike, ...) NDArray[float64]
Computes the theoretical detection threshold \(\gamma\).
- sdr.threshold_factor(p_fa: ArrayLike, ...) NDArray[float64]
Computes the theoretical detection threshold factor \(\alpha\).
- sdr.min_snr(p_d: ArrayLike, p_fa, ...) NDArray[float64]
Computes the minimum input signal-to-noise ratio (SNR) required to achieve the desired probability of detection \(P_d\).
Approximated performance¶
- sdr.albersheim(p_d: ArrayLike, p_fa, ...) NDArray[float64]
Estimates the minimum input signal-to-noise ratio (SNR) required to achieve the desired probability of detection \(P_d\).
- sdr.peebles(p_d: ArrayLike, p_fa, ...) NDArray[float64]
Estimates the non-coherent integration gain for a given probability of detection \(P_d\) and false alarm \(P_{fa}\).
- sdr.shnidman(p_d: ArrayLike, p_fa, ...) NDArray[float64]
Estimates the minimum input signal-to-noise ratio (SNR) required to achieve the desired probability of detection \(P_d\) for the Swerling target model.
Coherent integration¶
- sdr.coherent_gain(time_bandwidth: ArrayLike) NDArray[float64]
Computes the SNR improvement by coherent integration.
- sdr.coherent_gain_loss(time: ArrayLike, freq) NDArray[float64]
Computes the coherent gain loss (CGL) given a time or frequency offset.
- sdr.max_integration_time(cgl: ArrayLike, ...) NDArray[float64]
Computes the maximum integration time that produces at most the provided coherent gain loss (CGL).
- sdr.max_frequency_offset(cgl: ArrayLike, ...) NDArray[float64]
Computes the maximum frequency offset that produces at most the provided coherent gain loss (CGL).
Non-coherent integration¶
- sdr.non_coherent_gain(n_nc: ArrayLike, snr, ...) NDArray[float64]
Computes the SNR improvement by non-coherently integrating \(N_{nc}\) samples.