galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the discrete logarithm of the array \(x\) base \(\beta\).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Slower performance

If the FieldArray is configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than using lookup tables).

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([152, 234, 234, 166,   6, 108,  39,  11, 166,  19], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([ 57, 133, 133,  45, 122,  72,  11,  74,  45, 195])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([          2α^4 + 2α^2 + 2α,           2α^3 + 2α^2 + 2α,
       2α^4 + 2α^3 + 2α^2 + 2α,                          α,
         2α^4 + 2α^3 + α^2 + α,              2α^4 + 2α + 2,
    2α^4 + 2α^3 + 2α^2 + α + 1,           2α^3 + 2α^2 + 2α,
            2α^3 + α^2 + α + 2,              2α^4 + 2α + 2], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([ 94, 132, 237,   1,  23, 100, 186, 132, 200, 100])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^168, α^120,  α^59, α^109,  α^10, α^165,  α^31,  α^66, α^224,  α^94],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([168, 120,  59, 109,  10, 165,  31,  66, 224,  94])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([ 48, 138, 207,  83,  72,  99, 199,  88,  64,  96])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([ 48, 138, 207,  83,  72,  99, 199,  88,  64,  96])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([ 48, 138, 207,  83,  72,  99, 199,  88,  64,  96])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(138, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([113, 177,  71, 117, 219, 205,  39,  73, 149,  31, 217, 199,  59,
       185,  23,  27,  37,  17,   5,  57, 203, 189,  13, 105, 211,  45,
        29, 225,  67,  95, 127,  41,  91, 153, 233,   7, 179, 101, 193,
       103, 159, 183, 175,   3, 137,  53,  61, 125, 139,  83, 123, 131,
       109, 173,  51, 111, 191, 157,   1, 207,  75, 221, 195, 227, 239,
       161, 145, 115, 119, 129, 181, 223, 147, 107,  19, 163,  79,  25,
       141, 155,  49, 237,  63, 241,   9, 169,  89, 229,  21, 133, 197,
        65, 235,  35, 151,  85, 215, 167,  93,  87, 135,  47, 213,  97,
        81,  69, 201,  43, 171,  15])

In [29]: np.all(bases ** i == x)
Out[29]: np.True_
In [30]: x = GF.Random(low=1); x
Out[30]: GF(α^3 + 2α^2 + 2α + 2, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([160,  90,  32,  80, 218,  14, 188, 234, 166, 106,  16, 134,  30,
       172,  24, 186, 228, 144, 142,  70,  54,  92, 224,  78, 136,  68,
       146,  98, 112,  36, 122, 148, 116,  86, 180, 102,  50, 158,  12,
       118, 208, 212, 130, 182, 164, 150, 232, 162, 124,  34, 202,  42,
       240, 170, 190, 200,  52,   6, 222, 216, 194, 178, 214,  58,  60,
       168,   4, 120,  40,  82,  10, 138, 206,  38, 104, 128, 114, 226,
        84,  46, 230, 100, 192,  20,  62,   8, 156,  18,  64,   2, 174,
       152, 140,  26, 126, 236,  56,  48,  76, 196, 204,  28,  96, 238,
        74,  72,  94, 108, 210, 184])

In [33]: np.all(bases ** i == x)
Out[33]: np.True_
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^28, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([ 28,  46,  54,  14,  20, 190, 166, 168, 144, 194, 148,  90,  96,
        18, 222, 208,  52, 122, 164, 224,  76,   4, 136,  56,  48,  24,
        80, 120,  68, 212, 100,  38, 226, 130,  92,  36, 160,  70, 232,
       184, 230, 146, 174,  50, 186, 238, 210, 228,  58,  12, 114,  86,
        42,  60, 124, 156, 118, 116, 178,  62,  40, 134, 104, 234, 192,
       102, 158, 142, 128, 214,  32,   6,  30, 170, 236, 216,  26,  94,
       172,   2,  10,  78,  82,  64, 150,  74, 112, 106, 108, 200, 218,
       196, 206, 180,  16, 126,  34, 202,  98, 240,  72, 138, 162,  84,
       140, 182, 204, 152, 188,   8])

In [37]: np.all(bases ** i == x)
Out[37]: np.True_