galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the discrete logarithm of the array \(x\) base \(\beta\).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Slower performance

If the FieldArray is configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than using lookup tables).

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([221, 101,  30,  71,  98, 159, 183,  49, 107,  14], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([225,  85,  47, 182,  35, 161, 171,  61, 105, 209])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([     α^4 + 2α^3 + 2α^2 + 2,           α^4 + 2α^3 + α^2,
      α^4 + α^3 + 2α^2 + α + 1,  2α^4 + 2α^3 + α^2 + α + 2,
    2α^4 + 2α^3 + 2α^2 + α + 1,                   2α^3 + 2,
                    2α^3 + α^2,        2α^4 + 2α^2 + α + 1,
            α^4 + α^2 + 2α + 1,                         2α], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([ 43, 140,  56,  81, 186,  86, 128, 156, 159, 122])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^199, α^203,  α^20,   α^6,  α^70, α^240, α^160,  α^38,  α^59, α^198],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([199, 203,  20,   6,  70, 240, 160,  38,  59, 198])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([  5, 179, 144, 140,  20,  34, 184,  80, 207,  22])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([  5, 179, 144, 140,  20,  34, 184,  80, 207,  22])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([  5, 179, 144, 140,  20,  34, 184,  80, 207,  22])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(115, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([104, 240, 166,  52, 178, 118,  98, 140, 120, 202, 204, 196,  80,
       136,  64,  12, 124, 142,  56, 106, 144,  84, 194, 208,  40,  20,
       228, 100, 218,  96, 164,  72, 148,  68, 238,  30, 214,  18,  32,
       234, 232, 162,  24,  82,  34, 158,  54, 190,   8,  10, 216, 112,
       156,  50, 184, 130,  58,  16, 108,  92, 114, 152,   6,  74, 160,
       206, 172,  78,  26, 138, 188, 126, 146, 182, 116, 180,  62,  38,
       224,  42, 210, 186,  28, 134,   4, 102, 174,  48,  90,  86, 222,
         2, 212, 150,  94, 226, 230, 128, 122, 200,  60, 236,  14,  70,
        36, 192, 170,  46,  76, 168])

In [29]: np.all(bases ** i == x)
Out[29]: np.True_
In [30]: x = GF.Random(low=1); x
Out[30]: GF(α^4 + α^3 + α^2 + α + 1, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([ 64,  36, 158,  32, 184,  54, 172, 142,  18, 236, 200, 102,  12,
       214,  58,  26, 188, 106, 202,  28,  70, 182, 138, 128,   6, 124,
        10, 136, 190, 208, 194, 156, 240, 228,  72, 186,  20, 160, 150,
       144, 180, 230,  52, 218, 114,  60, 238, 210,  98,  62, 226, 162,
        96,  68,  76,  80, 166, 196, 234,  38, 126, 168, 134, 120,  24,
       164,  50,  48,  16, 178,   4, 152,  34, 112,  90, 148,  94,  42,
        82, 212,  92,  40, 222,   8, 170, 100,  14, 104,  74, 146, 118,
       206,  56, 204,   2,  46, 216, 116, 224,  30, 130, 108, 232, 192,
        78, 174,  86, 140,  84, 122])

In [33]: np.all(bases ** i == x)
Out[33]: np.True_
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^77, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([ 77, 187, 209,  99,  55,  99,  33,  99,  33, 231, 165, 187, 143,
       231, 187, 209, 143,  33, 209,  11, 209,  11,  11,  33,  11, 187,
        99, 209, 187,  99,  33, 165,  77,  55,  11,  99,  77,  11,  33,
       143, 209,  99,  55,  77, 209, 231,  33, 143,  99,  33,  11,  55,
        55, 165,  99, 187, 143,  77, 187, 231, 231, 187, 165,  99, 165,
        99,  11, 209, 231, 165, 209,  77, 143, 165, 165, 231,  11,  77,
       231, 187, 209,  33, 165,  55, 231, 143, 187, 231,  55, 187,  55,
        55, 143,  11, 165, 165,  33,  11, 209,  55,  77,  77, 143, 231,
       143,  77,  77,  55,  33, 143])

In [37]: np.all(bases ** i == x)
Out[37]: np.True_