-
galois.FieldArray.log(base: ElementLike | ArrayLike | None =
None) int | ndarray Computes the discrete logarithm of the array \(x\) base \(\beta\).
- Parameters:¶
- base: ElementLike | ArrayLike | None =
None¶ A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is
Nonewhich usesprimitive_element.Slower performance
If the
FieldArrayis configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different fromprimitive_element, then explicit calculation will be used (which is slower than using lookup tables).
- base: ElementLike | ArrayLike | None =
- Returns:¶
An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.
Examples
Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.
In [1]: GF = galois.GF(3**5) In [2]: alpha = GF.primitive_element; alpha Out[2]: GF(3, order=3^5) In [3]: x = GF.Random(10, low=1); x Out[3]: GF([232, 165, 136, 82, 224, 124, 2, 216, 150, 73], order=3^5) In [4]: i = x.log(); i Out[4]: array([ 97, 137, 99, 189, 155, 41, 121, 193, 52, 109]) In [5]: np.array_equal(alpha ** i, x) Out[5]: TrueIn [6]: GF = galois.GF(3**5, repr="poly") In [7]: alpha = GF.primitive_element; alpha Out[7]: GF(α, order=3^5) In [8]: x = GF.Random(10, low=1); x Out[8]: GF([ α^4 + α^3 + α + 1, 2α^3 + α + 1, α^4 + 2α^3 + α^2 + 2α + 1, 2α^3 + 2α^2 + 1, 2α^3 + 2α^2 + α + 2, 2α^4 + α^3 + 2α^2 + α + 1, 2α^4 + α^3 + 2α^2 + 2, 2α^4 + α^3 + α^2 + 1, α^4 + α, 2α^3 + α^2 + 1], order=3^5) In [9]: i = x.log(); i Out[9]: array([ 34, 28, 174, 109, 151, 178, 58, 164, 208, 157]) In [10]: np.array_equal(alpha ** i, x) Out[10]: TrueIn [11]: GF = galois.GF(3**5, repr="power") In [12]: alpha = GF.primitive_element; alpha Out[12]: GF(α, order=3^5) In [13]: x = GF.Random(10, low=1); x Out[13]: GF([α^116, α^33, α^231, α^177, α^62, α^20, α^203, α^10, α^239, α^105], order=3^5) In [14]: i = x.log(); i Out[14]: array([116, 33, 231, 177, 62, 20, 203, 10, 239, 105]) In [15]: np.array_equal(alpha ** i, x) Out[15]: TrueWith the default argument,
numpy.log()andlog()are equivalent.In [16]: np.array_equal(np.log(x), x.log()) Out[16]: TrueCompute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.
In [17]: beta = GF.primitive_elements[-1]; beta Out[17]: GF(242, order=3^5) In [18]: i = x.log(beta); i Out[18]: array([206, 165, 187, 137, 156, 144, 179, 72, 51, 151]) In [19]: np.array_equal(beta ** i, x) Out[19]: TrueIn [20]: beta = GF.primitive_elements[-1]; beta Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5) In [21]: i = x.log(beta); i Out[21]: array([206, 165, 187, 137, 156, 144, 179, 72, 51, 151]) In [22]: np.array_equal(beta ** i, x) Out[22]: TrueIn [23]: beta = GF.primitive_elements[-1]; beta Out[23]: GF(α^185, order=3^5) In [24]: i = x.log(beta); i Out[24]: array([206, 165, 187, 137, 156, 144, 179, 72, 51, 151]) In [25]: np.array_equal(beta ** i, x) Out[25]: TrueCompute the logarithm of a single finite field element base all of the primitive elements of the field.
In [26]: x = GF.Random(low=1); x Out[26]: GF(126, order=3^5) In [27]: bases = GF.primitive_elements In [28]: i = x.log(bases); i Out[28]: array([211, 217, 139, 45, 47, 23, 15, 177, 169, 105, 9, 151, 153, 127, 195, 29, 219, 81, 95, 115, 227, 203, 5, 59, 137, 129, 67, 161, 63, 111, 235, 53, 35, 3, 71, 133, 13, 225, 37, 21, 117, 89, 179, 57, 183, 39, 191, 197, 221, 125, 159, 69, 135, 141, 1, 173, 241, 79, 19, 61, 215, 85, 75, 199, 185, 155, 93, 7, 83, 31, 51, 123, 131, 97, 119, 193, 49, 233, 17, 41, 205, 147, 229, 223, 171, 65, 239, 237, 157, 107, 113, 25, 109, 181, 207, 163, 213, 27, 73, 201, 145, 167, 175, 149, 87, 101, 189, 91, 103, 43]) In [29]: np.all(bases ** i == x) Out[29]: np.True_In [30]: x = GF.Random(low=1); x Out[30]: GF(α^3 + α^2 + 2α + 2, order=3^5) In [31]: bases = GF.primitive_elements In [32]: i = x.log(bases); i Out[32]: array([143, 209, 77, 11, 33, 11, 165, 11, 165, 187, 99, 209, 231, 187, 209, 77, 231, 165, 77, 55, 77, 55, 55, 165, 55, 209, 11, 77, 209, 11, 165, 99, 143, 33, 55, 11, 143, 55, 165, 231, 77, 11, 33, 143, 77, 187, 165, 231, 11, 165, 55, 33, 33, 99, 11, 209, 231, 143, 209, 187, 187, 209, 99, 11, 99, 11, 55, 77, 187, 99, 77, 143, 231, 99, 99, 187, 55, 143, 187, 209, 77, 165, 99, 33, 187, 231, 209, 187, 33, 209, 33, 33, 231, 55, 99, 99, 165, 55, 77, 33, 143, 143, 231, 187, 231, 143, 143, 33, 165, 231]) In [33]: np.all(bases ** i == x) Out[33]: np.True_In [34]: x = GF.Random(low=1); x Out[34]: GF(α^209, order=3^5) In [35]: bases = GF.primitive_elements In [36]: i = x.log(bases); i Out[36]: array([209, 231, 187, 165, 11, 165, 55, 165, 55, 143, 33, 231, 77, 143, 231, 187, 77, 55, 187, 99, 187, 99, 99, 55, 99, 231, 165, 187, 231, 165, 55, 33, 209, 11, 99, 165, 209, 99, 55, 77, 187, 165, 11, 209, 187, 143, 55, 77, 165, 55, 99, 11, 11, 33, 165, 231, 77, 209, 231, 143, 143, 231, 33, 165, 33, 165, 99, 187, 143, 33, 187, 209, 77, 33, 33, 143, 99, 209, 143, 231, 187, 55, 33, 11, 143, 77, 231, 143, 11, 231, 11, 11, 77, 99, 33, 33, 55, 99, 187, 11, 209, 209, 77, 143, 77, 209, 209, 11, 55, 77]) In [37]: np.all(bases ** i == x) Out[37]: np.True_