- property galois.ReedSolomon.field : type[FieldArray]
The Galois field \(\mathrm{GF}(q)\) that defines the codeword alphabet.
Examples
Construct a \(\textrm{RS}(15, 9)\) code over \(\mathrm{GF}(2^4)\).
In [1]: rs = galois.ReedSolomon(15, 9); rs Out[1]: <Reed-Solomon Code: [15, 9, 7] over GF(2^4)> In [2]: rs.field Out[2]: <class 'galois.GF(2^4, primitive_element='x', irreducible_poly='x^4 + x + 1')'> In [3]: print(rs.field.properties) Galois Field: name: GF(2^4) characteristic: 2 degree: 4 order: 16 irreducible_poly: x^4 + x + 1 is_primitive_poly: True primitive_element: x
Construct a \(\textrm{RS}(26, 18)\) code over \(\mathrm{GF}(3^3)\).
In [4]: rs = galois.ReedSolomon(26, 18, field=galois.GF(3**3)); rs Out[4]: <Reed-Solomon Code: [26, 18, 9] over GF(3^3)> In [5]: rs.field Out[5]: <class 'galois.GF(3^3, primitive_element='x', irreducible_poly='x^3 + 2x + 1')'> In [6]: print(rs.field.properties) Galois Field: name: GF(3^3) characteristic: 3 degree: 3 order: 27 irreducible_poly: x^3 + 2x + 1 is_primitive_poly: True primitive_element: x