galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the discrete logarithm of the array \(x\) base \(\beta\).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Slower performance

If the FieldArray is configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than using lookup tables).

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([157,  15,  30,  63, 121, 231,  30,  26, 182, 141], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([176,   6,  47, 128,  64, 152,  47, 131,  27,  37])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([           α^3 + α^2,         α^3 + 2α + 1,       α^4 + 2α^3 + 1,
    2α^3 + 2α^2 + 2α + 1,   2α^3 + α^2 + α + 1,        2α^2 + 2α + 1,
            α^2 + 2α + 1,  2α^4 + α^2 + 2α + 2,              α^3 + 1,
     2α^4 + α^3 + 2α + 1], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([ 71, 198,  99,  95,  39,  88, 138,  60, 207,  91])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^108,  α^38, α^179,  α^32,  α^46, α^124, α^183, α^145,   α^9,  α^81],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([108,  38, 179,  32,  46, 124, 183, 145,   9,  81])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([100,  80, 103, 182, 186,  70,  35, 197,  89,  75])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([100,  80, 103, 182, 186,  70,  35, 197,  89,  75])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([100,  80, 103, 182, 186,  70,  35, 197,  89,  75])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(132, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([144, 202, 174,  72, 172, 182,  24, 138, 222, 168, 208,  48, 148,
        58,  70, 240,  60, 178, 152, 184, 218, 228,   8,  46,  74, 158,
       204,  64,   4, 226, 134, 230,  56, 150, 162, 116, 166, 118, 156,
        82,  42,  94, 238, 188, 196,  14, 112, 170, 160, 200, 206,  62,
       216,  32,  50, 180, 192,  78, 224, 146, 102, 136, 120,  28,  54,
         6,  52, 108,  36,  98, 130, 100,  16,  10, 142, 212,  30,  34,
       124, 114,  86,  90,  76,  18,  80, 104,  92, 234, 106,  26,  84,
        40, 126,  96, 186, 164,   2, 140,  20, 128, 232, 122,  38, 190,
       236, 210,  12, 194,  68, 214])

In [29]: np.all(bases ** i == x)
Out[29]: np.True_
In [30]: x = GF.Random(low=1); x
Out[30]: GF(2α^4 + 2α^2 + 2α + 1, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([108, 212,  70,  54,   8,  76,  18, 164, 106, 126, 156,  36, 232,
       104, 234, 180, 166, 194, 114, 138, 224,  50,   6, 216, 116,  58,
        32,  48, 124, 230,  40, 112,  42,  52, 182, 208,  64,  28, 238,
       122,  92,  10, 118,  20,  26, 192,  84, 188, 120, 150,  94, 228,
       162,  24,  98,  14, 144, 240, 168, 170,  16, 102,  90, 142, 222,
       186, 160, 202, 148, 134, 158, 196,  12,  68,  46,  38, 204,  86,
       214, 146,   4, 128, 178,  74,  60,  78, 190, 236, 140,  80, 184,
        30,  34,  72, 200,   2,  62, 226, 136,  96, 174, 152, 210,  82,
        56, 218, 130, 206, 172, 100])

In [33]: np.all(bases ** i == x)
Out[33]: np.True_
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^211, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([211, 217, 139,  45,  47,  23,  15, 177, 169, 105,   9, 151, 153,
       127, 195,  29, 219,  81,  95, 115, 227, 203,   5,  59, 137, 129,
        67, 161,  63, 111, 235,  53,  35,   3,  71, 133,  13, 225,  37,
        21, 117,  89, 179,  57, 183,  39, 191, 197, 221, 125, 159,  69,
       135, 141,   1, 173, 241,  79,  19,  61, 215,  85,  75, 199, 185,
       155,  93,   7,  83,  31,  51, 123, 131,  97, 119, 193,  49, 233,
        17,  41, 205, 147, 229, 223, 171,  65, 239, 237, 157, 107, 113,
        25, 109, 181, 207, 163, 213,  27,  73, 201, 145, 167, 175, 149,
        87, 101, 189,  91, 103,  43])

In [37]: np.all(bases ** i == x)
Out[37]: np.True_