-
galois.FieldArray.vector(dtype: DTypeLike | None =
None) FieldArray Converts an array over \(\mathrm{GF}(p^m)\) to length-\(m\) vectors over the prime subfield \(\mathrm{GF}(p)\).
- Parameters:¶
- dtype: DTypeLike | None =
None¶ The
numpy.dtypeof the array elements. The default isNonewhich represents the smallest unsigned data type for thisFieldArraysubclass (the first element indtypes).
- dtype: DTypeLike | None =
- Returns:¶
An array over \(\mathrm{GF}(p)\) with last dimension \(m\).
Notes
This method is the inverse of the
Vector()constructor. For an array with shape(n1, n2), the output shape is(n1, n2, m). By convention, the vectors are ordered from degree \(m-1\) to degree 0.Examples
In [1]: GF = galois.GF(3**3) In [2]: a = GF([11, 7]); a Out[2]: GF([11, 7], order=3^3) In [3]: vec = a.vector(); vec Out[3]: GF([[1, 0, 2], [0, 2, 1]], order=3) In [4]: GF.Vector(vec) Out[4]: GF([11, 7], order=3^3)In [5]: GF = galois.GF(3**3, repr="poly") In [6]: a = GF([11, 7]); a Out[6]: GF([α^2 + 2, 2α + 1], order=3^3) In [7]: vec = a.vector(); vec Out[7]: GF([[1, 0, 2], [0, 2, 1]], order=3) In [8]: GF.Vector(vec) Out[8]: GF([α^2 + 2, 2α + 1], order=3^3)In [9]: GF = galois.GF(3**3, repr="power") In [10]: a = GF([11, 7]); a Out[10]: GF([α^12, α^16], order=3^3) In [11]: vec = a.vector(); vec Out[11]: GF([[1, 0, 2], [0, 2, 1]], order=3) In [12]: GF.Vector(vec) Out[12]: GF([α^12, α^16], order=3^3)