-
galois.FieldArray.log(base: ElementLike | ArrayLike | None =
None
) int | ndarray Computes the discrete logarithm of the array
base .- Parameters:¶
- base: ElementLike | ArrayLike | None =
None
¶ A primitive element or elements
of the finite field that is the base of the logarithm. The default isNone
which usesprimitive_element
.Slower performance
If the
FieldArray
is configured to use lookup tables (ufunc_mode == "jit-lookup"
) and this method is invoked with a base different fromprimitive_element
, then explicit calculation will be used (which is slower than using lookup tables).
- base: ElementLike | ArrayLike | None =
- Returns:¶
An integer array
of powers of such that . The return array shape obeys NumPy broadcasting rules.
Examples
Compute the logarithm of
with default base , which is the specified primitive element of the field.In [1]: GF = galois.GF(3**5) In [2]: alpha = GF.primitive_element; alpha Out[2]: GF(3, order=3^5) In [3]: x = GF.Random(10, low=1); x Out[3]: GF([145, 160, 170, 66, 25, 72, 145, 27, 153, 86], order=3^5) In [4]: i = x.log(); i Out[4]: array([179, 184, 100, 102, 88, 192, 179, 3, 224, 73]) In [5]: np.array_equal(alpha ** i, x) Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly") In [7]: alpha = GF.primitive_element; alpha Out[7]: GF(α, order=3^5) In [8]: x = GF.Random(10, low=1); x Out[8]: GF([ 2α^4 + 2α + 2, 2α^4 + 2α^3 + 2α^2, α^3 + 2, 2α^4 + α^3 + 2α^2 + 2α, α^3 + α^2 + 2α, 2α^4 + α^3 + α^2 + 2α, α^3 + α, 2α^4 + α^2 + α, α^4 + α^3 + α^2 + 2α + 1, α^4 + 2α^3 + 2α], order=3^5) In [9]: i = x.log(); i Out[9]: array([100, 133, 15, 183, 210, 201, 47, 29, 41, 37]) In [10]: np.array_equal(alpha ** i, x) Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power") In [12]: alpha = GF.primitive_element; alpha Out[12]: GF(α, order=3^5) In [13]: x = GF.Random(10, low=1); x Out[13]: GF([α^180, α^11, α^103, α^48, α^22, α^129, α^39, α^241, α^174, α^98], order=3^5) In [14]: i = x.log(); i Out[14]: array([180, 11, 103, 48, 22, 129, 39, 241, 174, 98]) In [15]: np.array_equal(alpha ** i, x) Out[15]: True
With the default argument,
numpy.log()
andlog()
are equivalent.In [16]: np.array_equal(np.log(x), x.log()) Out[16]: True
Compute the logarithm of
with a different base , which is another primitive element of the field.In [17]: beta = GF.primitive_elements[-1]; beta Out[17]: GF(242, order=3^5) In [18]: i = x.log(beta); i Out[18]: array([ 86, 55, 185, 152, 110, 227, 63, 17, 188, 28]) In [19]: np.array_equal(beta ** i, x) Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5) In [21]: i = x.log(beta); i Out[21]: array([ 86, 55, 185, 152, 110, 227, 63, 17, 188, 28]) In [22]: np.array_equal(beta ** i, x) Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta Out[23]: GF(α^185, order=3^5) In [24]: i = x.log(beta); i Out[24]: array([ 86, 55, 185, 152, 110, 227, 63, 17, 188, 28]) In [25]: np.array_equal(beta ** i, x) Out[25]: True
Compute the logarithm of a single finite field element base all of the primitive elements of the field.
In [26]: x = GF.Random(low=1); x Out[26]: GF(241, order=3^5) In [27]: bases = GF.primitive_elements In [28]: i = x.log(bases); i Out[28]: array([238, 28, 96, 240, 170, 42, 80, 218, 14, 76, 48, 160, 90, 32, 72, 74, 200, 190, 184, 210, 162, 34, 188, 234, 166, 204, 196, 52, 94, 108, 124, 202, 106, 16, 56, 64, 150, 232, 36, 112, 140, 152, 148, 62, 8, 208, 212, 2, 130, 102, 122, 126, 236, 26, 86, 116, 156, 18, 182, 164, 98, 50, 158, 174, 180, 20, 12, 118, 120, 4, 30, 172, 134, 114, 70, 142, 100, 194, 10, 138, 206, 58, 92, 60, 186, 24, 226, 54, 192, 6, 38, 214, 178, 78, 136, 224, 168, 144, 228, 104, 128, 84, 46, 230, 222, 216, 40, 82, 146, 68]) In [29]: np.all(bases ** i == x) Out[29]: np.True_
In [30]: x = GF.Random(low=1); x Out[30]: GF(α^3 + α^2 + 1, order=3^5) In [31]: bases = GF.primitive_elements In [32]: i = x.log(bases); i Out[32]: array([227, 105, 239, 53, 93, 97, 179, 31, 113, 43, 59, 237, 35, 241, 149, 217, 145, 47, 85, 1, 63, 67, 221, 91, 199, 39, 9, 195, 171, 163, 223, 213, 95, 181, 89, 119, 139, 23, 135, 57, 41, 207, 71, 51, 151, 175, 69, 189, 185, 201, 155, 49, 159, 37, 141, 193, 101, 7, 17, 131, 65, 127, 169, 229, 191, 75, 45, 19, 87, 15, 173, 161, 79, 125, 81, 109, 133, 183, 219, 215, 107, 157, 103, 225, 153, 211, 61, 21, 115, 83, 203, 137, 123, 111, 147, 235, 25, 177, 129, 27, 117, 73, 233, 197, 167, 205, 29, 5, 3, 13]) In [33]: np.all(bases ** i == x) Out[33]: np.True_
In [34]: x = GF.Random(low=1); x Out[34]: GF(α^70, order=3^5) In [35]: bases = GF.primitive_elements In [36]: i = x.log(bases); i Out[36]: array([ 70, 236, 14, 156, 50, 112, 52, 178, 118, 122, 128, 104, 240, 166, 192, 36, 130, 184, 168, 76, 190, 10, 98, 140, 120, 60, 200, 58, 170, 46, 8, 216, 202, 204, 230, 90, 158, 54, 96, 218, 212, 2, 72, 4, 102, 232, 162, 86, 24, 30, 164, 94, 226, 150, 68, 148, 174, 48, 82, 34, 100, 214, 18, 222, 238, 134, 32, 234, 78, 172, 80, 136, 196, 62, 106, 56, 186, 114, 188, 126, 146, 74, 84, 160, 12, 64, 38, 144, 28, 16, 182, 6, 152, 208, 40, 194, 206, 142, 124, 116, 180, 224, 42, 210, 108, 92, 26, 138, 228, 20]) In [37]: np.all(bases ** i == x) Out[37]: np.True_