galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the discrete logarithm of the array \(x\) base \(\beta\).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Slower performance

If the FieldArray is configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than using lookup tables).

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([ 18,  21,  22, 155,  15, 188, 151, 220, 139, 198], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([123, 127, 101,  43,   6,  21, 174, 205,  59, 103])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([  α^4 + 2α^3 + 2α^2 + α + 2,    2α^4 + α^3 + α^2 + α + 2,
                    2α^4 + 2α^2, 2α^4 + 2α^3 + 2α^2 + 2α + 2,
                       α^3 + 2α,                    2α^3 + 2,
            2α^4 + 2α^3 + α + 2,         α^4 + 2α^2 + 2α + 1,
                  α^4 + α^2 + α,        2α^3 + 2α^2 + 2α + 2], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([145,  63, 169, 185,  75,  86, 225, 235, 215, 236])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([  α^9,  α^40, α^203, α^161,  α^61, α^144, α^192,  α^69,  α^67, α^220],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([  9,  40, 203, 161,  61, 144, 192,  69,  67, 220])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([ 89,  46, 179, 167, 173, 214, 124,  37,  71, 132])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([ 89,  46, 179, 167, 173, 214, 124,  37,  71, 132])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([ 89,  46, 179, 167, 173, 214, 124,  37,  71, 132])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(217, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([240,  14,  48, 120, 206, 142,  40, 230, 128,  38,  24,  80, 166,
        16,  36, 158, 100, 216,  92, 226, 202, 138,  94, 238, 204, 102,
        98,  26, 168,  54,  62, 222, 174,   8,  28,  32, 196, 116,  18,
        56,  70,  76,  74, 152,   4, 104, 106, 122, 186, 172, 182, 184,
       118, 134, 164,  58,  78, 130, 212,  82, 170, 146, 200, 208,  90,
        10,   6, 180,  60,   2, 136,  86, 188, 178, 156, 192,  50, 218,
       126, 190, 224, 150,  46,  30, 214,  12, 234, 148,  96, 124, 140,
       228, 210, 160,  68, 112,  84,  72, 114,  52,  64,  42, 144, 236,
       232, 108,  20, 162, 194,  34])

In [29]: np.all(bases ** i == x)
Out[29]: np.True_
In [30]: x = GF.Random(low=1); x
Out[30]: GF(2α^3 + α^2 + 2, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([233,  63,  95, 177, 201, 155,  59,  67, 213, 171, 229, 239,  21,
       193,  41, 227,  87, 125,  51,  49, 183, 137, 181, 103,  71, 217,
       199, 117, 151,   1,  37,  31,  57, 157,   5,  23,  35, 159,  81,
       131,  73, 221,  91,  79, 139, 105, 235,  65, 111, 169,  93, 223,
        47, 119, 133,  19, 109, 101, 107, 127,  39, 173,  53,  89, 163,
        45,  27, 205, 149,   9,   7, 145, 241,  75,  97,  17, 225,  13,
        83, 129, 161, 191, 207, 135, 237, 175,  85,  61,  69, 195,  25,
       179, 219, 115, 185, 141,  15, 203,  29, 113, 167, 189,  43, 215,
       197, 123, 211,   3, 147, 153])

In [33]: np.all(bases ** i == x)
Out[33]: np.True_
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^223, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([223, 133,  93,  51,  21, 139,  17,   7, 127, 119, 107, 155, 125,
        31, 221,  49, 103, 237,  27, 211, 225, 101, 167,  83, 123,   1,
       205,   5,  23,  29, 105, 173, 201, 197, 145, 183,  47,  13, 171,
       169, 181, 117, 219, 113, 159, 141,  39, 191,  73,  61,  35, 175,
       153,  63, 227,  67,  15,  25, 199,  53, 163, 177,  85, 161, 129,
        95,  57, 137, 207,  19, 203,  91, 213, 239, 151,   9, 233, 135,
       229, 111,  71, 215, 195,  43,  97, 235,  45,  75,  65,  89, 241,
       109,  59, 189,  41, 217, 193,  79, 115, 131,   3, 157,  37, 185,
       147, 179,  69,  87, 149,  81])

In [37]: np.all(bases ** i == x)
Out[37]: np.True_