galois.ReedSolomon.encode(message: ArrayLike, output: 'codeword' | 'parity' = 'codeword') FieldArray

Encodes the message \(\mathbf{m}\) into the codeword \(\mathbf{c}\).

Parameters:
message: ArrayLike

The message as either a \(k\)-length vector or \((N, k)\) matrix, where \(N\) is the number of messages.

Shortened codes

For the shortened \([n-s,\ k-s,\ d]\) code (only applicable for systematic codes), pass \(k-s\) symbols into encode() to return the \(n-s\)-symbol message.

output: 'codeword' | 'parity' = 'codeword'

Specify whether to return the codeword or parity symbols only. The default is "codeword".

Returns:

If output="codeword", the codeword as either a \(n\)-length vector or \((N, n)\) matrix. If output="parity", the parity symbols as either a \(n-k\)-length vector or \((N, n-k)\) matrix.

Notes

The message vector \(\mathbf{m}\) is a member of \(\mathrm{GF}(q)^k\). The corresponding message polynomial \(m(x)\) is a degree-\(k\) polynomial over \(\mathrm{GF}(q)\).

\[\mathbf{m} = [m_{k-1},\ \dots,\ m_1,\ m_0] \in \mathrm{GF}(q)^k\]

\[m(x) = m_{k-1} x^{k-1} + \dots + m_1 x + m_0 \in \mathrm{GF}(q)[x]\]

The codeword vector \(\mathbf{c}\) is a member of \(\mathrm{GF}(q)^n\). The corresponding codeword polynomial \(c(x)\) is a degree-\(n\) polynomial over \(\mathrm{GF}(q)\).

\[\mathbf{c} = [c_{n-1},\ \dots,\ c_1,\ c_0] \in \mathrm{GF}(q)^n\]

\[c(x) = c_{n-1} x^{n-1} + \dots + c_1 x + c_0 \in \mathrm{GF}(q)[x]\]

The codeword vector is computed by matrix multiplication of the message vector with the generator matrix. The equivalent polynomial operation is multiplication of the message polynomial with the generator polynomial.

\[\mathbf{c} = \mathbf{m} \mathbf{G}\]

\[c(x) = m(x) g(x)\]

Examples

Encode a single message using the \(\textrm{RS}(15, 9)\) code.

In [1]: rs = galois.ReedSolomon(15, 9)

In [2]: GF = rs.field

In [3]: m = GF.Random(rs.k); m
Out[3]: GF([ 1,  7,  1,  8, 12,  5,  7,  6,  9], order=2^4)

In [4]: c = rs.encode(m); c
Out[4]: GF([ 1,  7,  1,  8, 12,  5,  7,  6,  9,  4,  6,  4, 13,  6,  7], order=2^4)

Compute the parity symbols only.

In [5]: p = rs.encode(m, output="parity"); p
Out[5]: GF([ 4,  6,  4, 13,  6,  7], order=2^4)

Encode a single message using the shortened \(\textrm{RS}(11, 5)\) code.

In [6]: rs = galois.ReedSolomon(15, 9)

In [7]: GF = rs.field

In [8]: m = GF.Random(rs.k - 4); m
Out[8]: GF([12,  2,  5,  3, 13], order=2^4)

In [9]: c = rs.encode(m); c
Out[9]: GF([12,  2,  5,  3, 13,  0,  2, 12,  4, 15,  8], order=2^4)

Compute the parity symbols only.

In [10]: p = rs.encode(m, output="parity"); p
Out[10]: GF([ 0,  2, 12,  4, 15,  8], order=2^4)

Encode a matrix of three messages using the \(\textrm{RS}(15, 9)\) code.

In [11]: rs = galois.ReedSolomon(15, 9)

In [12]: GF = rs.field

In [13]: m = GF.Random((3, rs.k)); m
Out[13]: 
GF([[15, 11, 13,  8,  6,  3,  7, 14,  5],
    [ 3, 12,  1,  1, 13, 13,  6,  4,  2],
    [ 3, 10,  7, 11, 10,  9,  0,  9,  4]], order=2^4)

In [14]: c = rs.encode(m); c
Out[14]: 
GF([[15, 11, 13,  8,  6,  3,  7, 14,  5,  4,  3,  0,  5,  8,  9],
    [ 3, 12,  1,  1, 13, 13,  6,  4,  2, 14,  1, 12,  5,  8,  7],
    [ 3, 10,  7, 11, 10,  9,  0,  9,  4, 12,  5,  9, 10, 12, 15]],
   order=2^4)

Compute the parity symbols only.

In [15]: p = rs.encode(m, output="parity"); p
Out[15]: 
GF([[ 4,  3,  0,  5,  8,  9],
    [14,  1, 12,  5,  8,  7],
    [12,  5,  9, 10, 12, 15]], order=2^4)

Encode a matrix of three messages using the shortened \(\textrm{RS}(11, 5)\) code.

In [16]: rs = galois.ReedSolomon(15, 9)

In [17]: GF = rs.field

In [18]: m = GF.Random((3, rs.k - 4)); m
Out[18]: 
GF([[ 0, 12,  5, 15,  9],
    [10,  3,  5,  6,  7],
    [ 3,  4,  2, 14, 15]], order=2^4)

In [19]: c = rs.encode(m); c
Out[19]: 
GF([[ 0, 12,  5, 15,  9,  3, 15,  6,  6,  4,  8],
    [10,  3,  5,  6,  7, 10, 14, 11,  9, 10, 11],
    [ 3,  4,  2, 14, 15,  8, 11, 15,  2, 13,  6]], order=2^4)

Compute the parity symbols only.

In [20]: p = rs.encode(m, output="parity"); p
Out[20]: 
GF([[ 3, 15,  6,  6,  4,  8],
    [10, 14, 11,  9, 10, 11],
    [ 8, 11, 15,  2, 13,  6]], order=2^4)