-
galois.FieldArray.log(base: ElementLike | ArrayLike | None =
None
) int | ndarray Computes the discrete logarithm of the array \(x\) base \(\beta\).
- Parameters:¶
- base: ElementLike | ArrayLike | None =
None
¶ A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is
None
which usesprimitive_element
.Slower performance
If the
FieldArray
is configured to use lookup tables (ufunc_mode == "jit-lookup"
) and this method is invoked with a base different fromprimitive_element
, then explicit calculation will be used (which is slower than using lookup tables).
- base: ElementLike | ArrayLike | None =
- Returns:¶
An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.
Examples¶
Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.
In [1]: GF = galois.GF(3**5) In [2]: alpha = GF.primitive_element; alpha Out[2]: GF(3, order=3^5) In [3]: x = GF.Random(10, low=1); x Out[3]: GF([239, 36, 45, 187, 160, 165, 99, 151, 45, 171], order=3^5) In [4]: i = x.log(); i Out[4]: array([162, 71, 7, 108, 184, 137, 76, 174, 7, 197]) In [5]: np.array_equal(alpha ** i, x) Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly") In [7]: alpha = GF.primitive_element; alpha Out[7]: GF(α, order=3^5) In [8]: x = GF.Random(10, low=1); x Out[8]: GF([ α^4 + 2α^3 + α + 1, α^4 + 2α^2 + α + 1, 2α^3 + α^2 + 1, α^4 + α^3 + 2α^2 + α, 2α^2 + 2, α^4 + 2α^2 + 2α + 1, α^4 + 2α^2 + 1, α^4 + α^3 + 1, α^4 + α^3 + 2α^2 + 1, α^4 + α^2 + 1], order=3^5) In [9]: i = x.log(); i Out[9]: array([ 59, 181, 157, 31, 167, 235, 92, 165, 25, 148]) In [10]: np.array_equal(alpha ** i, x) Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power") In [12]: alpha = GF.primitive_element; alpha Out[12]: GF(α, order=3^5) In [13]: x = GF.Random(10, low=1); x Out[13]: GF([ α^15, α^7, α^184, α^116, α^52, α^164, α^212, α^5, α^95, α^197], order=3^5) In [14]: i = x.log(); i Out[14]: array([ 15, 7, 184, 116, 52, 164, 212, 5, 95, 197]) In [15]: np.array_equal(alpha ** i, x) Out[15]: True
With the default argument,
numpy.log()
andlog()
are equivalent.In [16]: np.array_equal(np.log(x), x.log()) Out[16]: True
Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.
In [17]: beta = GF.primitive_elements[-1]; beta Out[17]: GF(242, order=3^5) In [18]: i = x.log(beta); i Out[18]: array([229, 123, 18, 206, 84, 116, 26, 157, 79, 39]) In [19]: np.array_equal(beta ** i, x) Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5) In [21]: i = x.log(beta); i Out[21]: array([229, 123, 18, 206, 84, 116, 26, 157, 79, 39]) In [22]: np.array_equal(beta ** i, x) Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta Out[23]: GF(α^185, order=3^5) In [24]: i = x.log(beta); i Out[24]: array([229, 123, 18, 206, 84, 116, 26, 157, 79, 39]) In [25]: np.array_equal(beta ** i, x) Out[25]: True
Compute the logarithm of a single finite field element base all of the primitive elements of the field.
In [26]: x = GF.Random(low=1); x Out[26]: GF(229, order=3^5) In [27]: bases = GF.primitive_elements In [28]: i = x.log(bases); i Out[28]: array([163, 69, 81, 21, 151, 43, 7, 131, 95, 49, 101, 135, 23, 27, 91, 191, 199, 183, 125, 215, 235, 127, 83, 205, 193, 157, 241, 59, 223, 197, 29, 57, 97, 195, 17, 175, 119, 105, 227, 155, 103, 219, 19, 75, 37, 115, 73, 221, 87, 139, 171, 129, 63, 211, 65, 113, 177, 53, 25, 93, 181, 201, 35, 109, 167, 153, 237, 213, 71, 79, 169, 9, 45, 13, 233, 203, 39, 141, 137, 3, 15, 117, 123, 217, 225, 111, 47, 159, 41, 179, 85, 173, 67, 149, 145, 189, 51, 61, 147, 239, 229, 207, 1, 5, 89, 31, 185, 107, 161, 133]) In [29]: np.all(bases ** i == x) Out[29]: np.True_
In [30]: x = GF.Random(low=1); x Out[30]: GF(2α^4 + α^3 + α^2 + 2α + 2, order=3^5) In [31]: bases = GF.primitive_elements In [32]: i = x.log(bases); i Out[32]: array([ 55, 99, 11, 209, 143, 209, 231, 209, 231, 165, 187, 99, 33, 165, 99, 11, 33, 231, 11, 77, 11, 77, 77, 231, 77, 99, 209, 11, 99, 209, 231, 187, 55, 143, 77, 209, 55, 77, 231, 33, 11, 209, 143, 55, 11, 165, 231, 33, 209, 231, 77, 143, 143, 187, 209, 99, 33, 55, 99, 165, 165, 99, 187, 209, 187, 209, 77, 11, 165, 187, 11, 55, 33, 187, 187, 165, 77, 55, 165, 99, 11, 231, 187, 143, 165, 33, 99, 165, 143, 99, 143, 143, 33, 77, 187, 187, 231, 77, 11, 143, 55, 55, 33, 165, 33, 55, 55, 143, 231, 33]) In [33]: np.all(bases ** i == x) Out[33]: np.True_
In [34]: x = GF.Random(low=1); x Out[34]: GF(α^82, order=3^5) In [35]: bases = GF.primitive_elements In [36]: i = x.log(bases); i Out[36]: array([ 82, 152, 210, 162, 24, 228, 54, 8, 76, 136, 226, 108, 212, 70, 218, 56, 14, 98, 100, 172, 188, 150, 18, 164, 106, 174, 96, 144, 130, 206, 120, 94, 126, 156, 62, 140, 192, 84, 230, 124, 34, 30, 112, 60, 78, 92, 10, 80, 118, 208, 40, 200, 2, 72, 52, 42, 190, 236, 20, 26, 48, 64, 28, 184, 182, 74, 238, 122, 202, 160, 232, 104, 36, 204, 138, 114, 128, 16, 158, 196, 12, 142, 50, 222, 180, 234, 86, 224, 178, 240, 68, 90, 102, 216, 116, 6, 186, 194, 166, 46, 38, 214, 146, 4, 168, 170, 148, 134, 32, 58]) In [37]: np.all(bases ** i == x) Out[37]: np.True_