-
galois.ReedSolomon.decode(codeword: ArrayLike, output: 'message' | 'codeword' =
'message'
, errors: False =False
) FieldArray -
galois.ReedSolomon.decode(codeword: ArrayLike, output: 'message' | 'codeword' =
'message'
, errors: True =True
) tuple[galois._fields._array.FieldArray, int | numpy.ndarray] Decodes the codeword \(\mathbf{c}\) into the message \(\mathbf{m}\).
- Parameters:¶
- codeword: ArrayLike¶
The codeword as either a \(n\)-length vector or \((N, n)\) matrix, where \(N\) is the number of codewords.
Shortened codes
For the shortened \([n-s,\ k-s,\ d]\) code (only applicable for systematic codes), pass \(n-s\) symbols into
decode()
to return the \(k-s\)-symbol message.- output: 'message' | 'codeword' =
'message'
¶ Specify whether to return the error-corrected message or entire codeword. The default is
"message"
.- errors: False =
False
¶ - errors: True =
True
Optionally specify whether to return the number of corrected errors. The default is
False
.
- Returns:¶
If
output="message"
, the error-corrected message as either a \(k\)-length vector or \((N, k)\) matrix. Ifoutput="codeword"
, the error-corrected codeword as either a \(n\)-length vector or \((N, n)\) matrix.If
errors=True
, returns the number of corrected symbol errors as either a scalar or \(N\)-length array. Valid number of corrections are in \([0, t]\). If a codeword has too many errors and cannot be corrected, -1 will be returned.
Notes¶
The message vector \(\mathbf{m}\) is a member of \(\mathrm{GF}(q)^k\). The corresponding message polynomial \(m(x)\) is a degree-\(k\) polynomial over \(\mathrm{GF}(q)\).
\[\mathbf{m} = [m_{k-1},\ \dots,\ m_1,\ m_0] \in \mathrm{GF}(q)^k\]\[m(x) = m_{k-1} x^{k-1} + \dots + m_1 x + m_0 \in \mathrm{GF}(q)[x]\]The codeword vector \(\mathbf{c}\) is a member of \(\mathrm{GF}(q)^n\). The corresponding codeword polynomial \(c(x)\) is a degree-\(n\) polynomial over \(\mathrm{GF}(q)\). Each codeword polynomial \(c(x)\) is divisible by the generator polynomial \(g(x)\).
\[\mathbf{c} = [c_{n-1},\ \dots,\ c_1,\ c_0] \in \mathrm{GF}(q)^n\]\[c(x) = c_{n-1} x^{n-1} + \dots + c_1 x + c_0 \in \mathrm{GF}(q)[x]\]In decoding, the syndrome vector \(\mathbf{s}\) is computed by evaluating the received codeword \(\mathbf{r}\) at the roots \(\alpha^c, \dots, \alpha^{c+d-2}\) of the generator polynomial \(g(x)\). The equivalent polynomial operation computes the remainder of \(r(x)\) by \(g(x)\).
\[\mathbf{s} = [r(\alpha^c),\ \dots,\ r(\alpha^{c+d-2})] \in \mathrm{GF}(q)^{d-1}\]\[s(x) = r(x)\ \textrm{mod}\ g(x) \in \mathrm{GF}(q)[x]\]A syndrome of zeros indicates the received codeword is a valid codeword and there are no errors. If the syndrome is non-zero, the decoder will find an error-locator polynomial \(\sigma(x)\) and the corresponding error locations and values.
Examples¶
Encode a single message using the \(\textrm{RS}(15, 9)\) code.
In [1]: rs = galois.ReedSolomon(15, 9) In [2]: GF = rs.field In [3]: m = GF.Random(rs.k); m Out[3]: GF([ 1, 3, 7, 7, 11, 15, 5, 2, 3], order=2^4) In [4]: c = rs.encode(m); c Out[4]: GF([ 1, 3, 7, 7, 11, 15, 5, 2, 3, 3, 3, 11, 5, 8, 14], order=2^4)
Corrupt \(t\) symbols of the codeword.
In [5]: e = GF.Random(rs.t, low=1); e Out[5]: GF([ 7, 13, 2], order=2^4) In [6]: c[0:rs.t] += e; c Out[6]: GF([ 6, 14, 5, 7, 11, 15, 5, 2, 3, 3, 3, 11, 5, 8, 14], order=2^4)
Decode the codeword and recover the message.
In [7]: d = rs.decode(c); d Out[7]: GF([ 1, 3, 7, 7, 11, 15, 5, 2, 3], order=2^4) In [8]: np.array_equal(d, m) Out[8]: True
Decode the codeword, specifying the number of corrected errors, and recover the message.
In [9]: d, e = rs.decode(c, errors=True); d, e Out[9]: (GF([ 1, 3, 7, 7, 11, 15, 5, 2, 3], order=2^4), 3) In [10]: np.array_equal(d, m) Out[10]: True
Encode a single message using the shortened \(\textrm{RS}(11, 5)\) code.
In [11]: rs = galois.ReedSolomon(15, 9) In [12]: GF = rs.field In [13]: m = GF.Random(rs.k - 4); m Out[13]: GF([ 3, 11, 1, 5, 1], order=2^4) In [14]: c = rs.encode(m); c Out[14]: GF([ 3, 11, 1, 5, 1, 7, 13, 13, 14, 3, 15], order=2^4)
Corrupt \(t\) symbols of the codeword.
In [15]: e = GF.Random(rs.t, low=1); e Out[15]: GF([13, 9, 11], order=2^4) In [16]: c[0:rs.t] += e; c Out[16]: GF([14, 2, 10, 5, 1, 7, 13, 13, 14, 3, 15], order=2^4)
Decode the codeword and recover the message.
In [17]: d = rs.decode(c); d Out[17]: GF([ 3, 11, 1, 5, 1], order=2^4) In [18]: np.array_equal(d, m) Out[18]: True
Decode the codeword, specifying the number of corrected errors, and recover the message.
In [19]: d, e = rs.decode(c, errors=True); d, e Out[19]: (GF([ 3, 11, 1, 5, 1], order=2^4), 3) In [20]: np.array_equal(d, m) Out[20]: True
Encode a matrix of three messages using the \(\textrm{RS}(15, 9)\) code.
In [21]: rs = galois.ReedSolomon(15, 9) In [22]: GF = rs.field In [23]: m = GF.Random((3, rs.k)); m Out[23]: GF([[14, 8, 1, 10, 2, 15, 2, 11, 4], [12, 13, 7, 3, 3, 15, 2, 7, 5], [14, 9, 12, 7, 2, 10, 14, 8, 14]], order=2^4) In [24]: c = rs.encode(m); c Out[24]: GF([[14, 8, 1, 10, 2, 15, 2, 11, 4, 9, 10, 3, 13, 1, 14], [12, 13, 7, 3, 3, 15, 2, 7, 5, 3, 2, 5, 2, 7, 4], [14, 9, 12, 7, 2, 10, 14, 8, 14, 12, 5, 2, 6, 6, 15]], order=2^4)
Corrupt the codeword. Add one error to the first codeword, two to the second, and three to the third.
In [25]: c[0,0:1] += GF.Random(1, low=1) In [26]: c[1,0:2] += GF.Random(2, low=1) In [27]: c[2,0:3] += GF.Random(3, low=1) In [28]: c Out[28]: GF([[ 4, 8, 1, 10, 2, 15, 2, 11, 4, 9, 10, 3, 13, 1, 14], [ 8, 7, 7, 3, 3, 15, 2, 7, 5, 3, 2, 5, 2, 7, 4], [ 1, 4, 4, 7, 2, 10, 14, 8, 14, 12, 5, 2, 6, 6, 15]], order=2^4)
Decode the codeword and recover the message.
In [29]: d = rs.decode(c); d Out[29]: GF([[14, 8, 1, 10, 2, 15, 2, 11, 4], [12, 13, 7, 3, 3, 15, 2, 7, 5], [14, 9, 12, 7, 2, 10, 14, 8, 14]], order=2^4) In [30]: np.array_equal(d, m) Out[30]: True
Decode the codeword, specifying the number of corrected errors, and recover the message.
In [31]: d, e = rs.decode(c, errors=True); d, e Out[31]: (GF([[14, 8, 1, 10, 2, 15, 2, 11, 4], [12, 13, 7, 3, 3, 15, 2, 7, 5], [14, 9, 12, 7, 2, 10, 14, 8, 14]], order=2^4), array([1, 2, 3])) In [32]: np.array_equal(d, m) Out[32]: True
Encode a matrix of three messages using the shortened \(\textrm{RS}(11, 5)\) code.
In [33]: rs = galois.ReedSolomon(15, 9) In [34]: GF = rs.field In [35]: m = GF.Random((3, rs.k - 4)); m Out[35]: GF([[12, 7, 15, 2, 4], [ 4, 1, 4, 0, 14], [ 0, 7, 10, 4, 13]], order=2^4) In [36]: c = rs.encode(m); c Out[36]: GF([[12, 7, 15, 2, 4, 0, 5, 12, 11, 5, 2], [ 4, 1, 4, 0, 14, 13, 8, 0, 5, 13, 11], [ 0, 7, 10, 4, 13, 3, 11, 12, 14, 15, 0]], order=2^4)
Corrupt the codeword. Add one error to the first codeword, two to the second, and three to the third.
In [37]: c[0,0:1] += GF.Random(1, low=1) In [38]: c[1,0:2] += GF.Random(2, low=1) In [39]: c[2,0:3] += GF.Random(3, low=1) In [40]: c Out[40]: GF([[ 9, 7, 15, 2, 4, 0, 5, 12, 11, 5, 2], [ 7, 8, 4, 0, 14, 13, 8, 0, 5, 13, 11], [ 7, 0, 6, 4, 13, 3, 11, 12, 14, 15, 0]], order=2^4)
Decode the codeword and recover the message.
In [41]: d = rs.decode(c); d Out[41]: GF([[12, 7, 15, 2, 4], [ 4, 1, 4, 0, 14], [ 0, 7, 10, 4, 13]], order=2^4) In [42]: np.array_equal(d, m) Out[42]: True
Decode the codeword, specifying the number of corrected errors, and recover the message.
In [43]: d, e = rs.decode(c, errors=True); d, e Out[43]: (GF([[12, 7, 15, 2, 4], [ 4, 1, 4, 0, 14], [ 0, 7, 10, 4, 13]], order=2^4), array([1, 2, 3])) In [44]: np.array_equal(d, m) Out[44]: True