-
galois.FieldArray.log(base: ElementLike | ArrayLike | None =
None
) int | ndarray Computes the discrete logarithm of the array \(x\) base \(\beta\).
- Parameters:¶
- base: ElementLike | ArrayLike | None =
None
¶ A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is
None
which usesprimitive_element
.Slower performance
If the
FieldArray
is configured to use lookup tables (ufunc_mode == "jit-lookup"
) and this method is invoked with a base different fromprimitive_element
, then explicit calculation will be used (which is slower than using lookup tables).
- base: ElementLike | ArrayLike | None =
- Returns:¶
An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.
Examples¶
Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.
In [1]: GF = galois.GF(3**5) In [2]: alpha = GF.primitive_element; alpha Out[2]: GF(3, order=3^5) In [3]: x = GF.Random(10, low=1); x Out[3]: GF([ 95, 132, 183, 210, 37, 117, 176, 20, 79, 109], order=3^5) In [4]: i = x.log(); i Out[4]: array([229, 144, 171, 173, 227, 12, 114, 167, 95, 165]) In [5]: np.array_equal(alpha ** i, x) Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly") In [7]: alpha = GF.primitive_element; alpha Out[7]: GF(α, order=3^5) In [8]: x = GF.Random(10, low=1); x Out[8]: GF([ α^4 + α^3 + α^2 + α, 2, 2α^3 + α^2 + α, 2α^4 + α^3, α^4 + α + 1, 2α^2 + α + 2, 2α^4 + α^3 + 2α + 2, 2α + 2, α^4 + α^3 + α^2 + 2α, 2α^4 + α^3 + α], order=3^5) In [9]: i = x.log(); i Out[9]: array([116, 121, 102, 129, 221, 17, 180, 190, 217, 158]) In [10]: np.array_equal(alpha ** i, x) Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power") In [12]: alpha = GF.primitive_element; alpha Out[12]: GF(α, order=3^5) In [13]: x = GF.Random(10, low=1); x Out[13]: GF([α^151, α^39, α^144, α^11, α^224, α^133, α^116, α^207, α^47, α^108], order=3^5) In [14]: i = x.log(); i Out[14]: array([151, 39, 144, 11, 224, 133, 116, 207, 47, 108]) In [15]: np.array_equal(alpha ** i, x) Out[15]: True
With the default argument,
numpy.log()
andlog()
are equivalent.In [16]: np.array_equal(np.log(x), x.log()) Out[16]: True
Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.
In [17]: beta = GF.primitive_elements[-1]; beta Out[17]: GF(242, order=3^5) In [18]: i = x.log(beta); i Out[18]: array([ 95, 63, 214, 55, 64, 159, 206, 111, 169, 100]) In [19]: np.array_equal(beta ** i, x) Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5) In [21]: i = x.log(beta); i Out[21]: array([ 95, 63, 214, 55, 64, 159, 206, 111, 169, 100]) In [22]: np.array_equal(beta ** i, x) Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta Out[23]: GF(α^185, order=3^5) In [24]: i = x.log(beta); i Out[24]: array([ 95, 63, 214, 55, 64, 159, 206, 111, 169, 100]) In [25]: np.array_equal(beta ** i, x) Out[25]: True
Compute the logarithm of a single finite field element base all of the primitive elements of the field.
In [26]: x = GF.Random(low=1); x Out[26]: GF(10, order=3^5) In [27]: bases = GF.primitive_elements In [28]: i = x.log(bases); i Out[28]: array([ 46, 162, 106, 144, 102, 122, 48, 34, 202, 94, 174, 96, 54, 116, 140, 238, 120, 114, 62, 126, 194, 214, 16, 92, 148, 74, 166, 128, 8, 210, 26, 218, 112, 58, 82, 232, 90, 236, 70, 164, 84, 188, 234, 134, 150, 28, 224, 98, 78, 158, 170, 124, 190, 64, 100, 118, 142, 156, 206, 50, 204, 30, 240, 56, 108, 12, 104, 216, 72, 196, 18, 200, 32, 20, 42, 182, 60, 68, 6, 228, 172, 180, 152, 36, 160, 208, 184, 226, 212, 52, 168, 80, 10, 192, 130, 86, 4, 38, 40, 14, 222, 2, 76, 138, 230, 178, 24, 146, 136, 186]) In [29]: np.all(bases ** i == x) Out[29]: np.True_
In [30]: x = GF.Random(low=1); x Out[30]: GF(2α^4 + 2α^3 + 2α + 1, order=3^5) In [31]: bases = GF.primitive_elements In [32]: i = x.log(bases); i Out[32]: array([134, 30, 172, 188, 234, 166, 224, 78, 136, 116, 86, 206, 10, 138, 8, 62, 76, 48, 128, 104, 18, 192, 236, 26, 126, 184, 210, 194, 118, 12, 202, 130, 200, 190, 60, 34, 178, 214, 4, 120, 150, 232, 124, 222, 216, 50, 158, 54, 122, 92, 148, 14, 80, 218, 144, 228, 98, 2, 74, 72, 226, 140, 152, 100, 20, 56, 82, 40, 94, 108, 84, 46, 230, 174, 196, 204, 38, 156, 28, 96, 238, 114, 64, 168, 182, 164, 52, 6, 102, 162, 58, 212, 208, 170, 42, 240, 180, 16, 106, 146, 68, 90, 32, 160, 186, 24, 112, 36, 70, 142]) In [33]: np.all(bases ** i == x) Out[33]: np.True_
In [34]: x = GF.Random(low=1); x Out[34]: GF(α^213, order=3^5) In [35]: bases = GF.primitive_elements In [36]: i = x.log(bases); i Out[36]: array([213, 203, 91, 167, 83, 123, 217, 189, 41, 67, 227, 71, 229, 111, 159, 113, 119, 107, 3, 131, 25, 65, 153, 63, 175, 27, 211, 135, 137, 57, 173, 73, 103, 237, 43, 101, 59, 109, 19, 207, 47, 13, 105, 147, 179, 177, 85, 75, 35, 195, 219, 127, 17, 7, 79, 115, 163, 191, 49, 221, 45, 181, 117, 233, 95, 145, 87, 69, 23, 29, 157, 37, 185, 161, 205, 1, 241, 15, 133, 93, 223, 239, 183, 193, 199, 53, 5, 89, 61, 225, 215, 39, 141, 21, 139, 51, 129, 197, 201, 149, 81, 125, 31, 155, 97, 235, 169, 171, 151, 9]) In [37]: np.all(bases ** i == x) Out[37]: np.True_