- property galois.ReedSolomon.alpha : FieldArray
A primitive \(n\)-th root of unity \(\alpha\) in \(\mathrm{GF}(q)\) whose consecutive powers \(\alpha^c, \dots, \alpha^{c+d-2}\) are roots of the generator polynomial \(g(x)\).
Examples¶
Construct a primitive \(\textrm{RS}(255, 223)\) code over \(\mathrm{GF}(2^8)\).
In [1]: rs = galois.ReedSolomon(255, 223); rs Out[1]: <Reed-Solomon Code: [255, 223, 33] over GF(2^8)> In [2]: rs.alpha Out[2]: GF(2, order=2^8) In [3]: rs.roots[0] == rs.alpha ** rs.c Out[3]: np.True_ In [4]: rs.alpha.multiplicative_order() == rs.n Out[4]: True
Construct a non-primitive \(\textrm{RS}(85, 65)\) code over \(\mathrm{GF}(2^8)\).
In [5]: rs = galois.ReedSolomon(85, 65, field=galois.GF(2**8)); rs Out[5]: <Reed-Solomon Code: [85, 65, 21] over GF(2^8)> In [6]: rs.alpha Out[6]: GF(8, order=2^8) In [7]: rs.roots[0] == rs.alpha ** rs.c Out[7]: np.True_ In [8]: rs.alpha.multiplicative_order() == rs.n Out[8]: True