-
galois.FieldArray.log(base: ElementLike | ArrayLike | None =
None
) int | ndarray Computes the discrete logarithm of the array \(x\) base \(\beta\).
- Parameters:¶
- base: ElementLike | ArrayLike | None =
None
¶ A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is
None
which usesprimitive_element
.Slower performance
If the
FieldArray
is configured to use lookup tables (ufunc_mode == "jit-lookup"
) and this method is invoked with a base different fromprimitive_element
, then explicit calculation will be used (which is slower than using lookup tables).
- base: ElementLike | ArrayLike | None =
- Returns:¶
An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.
Examples¶
Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.
In [1]: GF = galois.GF(3**5) In [2]: alpha = GF.primitive_element; alpha Out[2]: GF(3, order=3^5) In [3]: x = GF.Random(10, low=1); x Out[3]: GF([145, 30, 83, 216, 109, 13, 143, 153, 124, 93], order=3^5) In [4]: i = x.log(); i Out[4]: array([179, 47, 120, 193, 165, 10, 26, 224, 41, 215]) In [5]: np.array_equal(alpha ** i, x) Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly") In [7]: alpha = GF.primitive_element; alpha Out[7]: GF(α, order=3^5) In [8]: x = GF.Random(10, low=1); x Out[8]: GF([ α^4 + 2α + 1, 2α^4 + 2α^3 + 2α^2 + 2α + 2, α^4 + 2α^3 + 2α + 2, α^4 + 2α^3 + 2α^2 + 2, 2α^4 + α^2 + 2, α^3 + 2α^2 + 2α + 1, 2α^4 + α^3 + α^2 + 2, α^4 + 2α^3 + α, 2α^3 + α^2, 2α^4], order=3^5) In [9]: i = x.log(); i Out[9]: array([130, 185, 26, 43, 213, 79, 33, 113, 128, 125]) In [10]: np.array_equal(alpha ** i, x) Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power") In [12]: alpha = GF.primitive_element; alpha Out[12]: GF(α, order=3^5) In [13]: x = GF.Random(10, low=1); x Out[13]: GF([α^132, α^11, α^166, α^66, α^236, α^222, α^74, α^50, α^142, α^215], order=3^5) In [14]: i = x.log(); i Out[14]: array([132, 11, 166, 66, 236, 222, 74, 50, 142, 215]) In [15]: np.array_equal(alpha ** i, x) Out[15]: True
With the default argument,
numpy.log()
andlog()
are equivalent.In [16]: np.array_equal(np.log(x), x.log()) Out[16]: True
Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.
In [17]: beta = GF.primitive_elements[-1]; beta Out[17]: GF(242, order=3^5) In [18]: i = x.log(beta); i Out[18]: array([176, 55, 82, 88, 102, 98, 194, 118, 6, 217]) In [19]: np.array_equal(beta ** i, x) Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5) In [21]: i = x.log(beta); i Out[21]: array([176, 55, 82, 88, 102, 98, 194, 118, 6, 217]) In [22]: np.array_equal(beta ** i, x) Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta Out[23]: GF(α^185, order=3^5) In [24]: i = x.log(beta); i Out[24]: array([176, 55, 82, 88, 102, 98, 194, 118, 6, 217]) In [25]: np.array_equal(beta ** i, x) Out[25]: True
Compute the logarithm of a single finite field element base all of the primitive elements of the field.
In [26]: x = GF.Random(low=1); x Out[26]: GF(80, order=3^5) In [27]: bases = GF.primitive_elements In [28]: i = x.log(bases); i Out[28]: array([236, 42, 144, 118, 134, 184, 120, 206, 142, 114, 72, 240, 14, 48, 108, 232, 58, 164, 34, 194, 122, 172, 40, 230, 128, 64, 52, 78, 20, 162, 186, 182, 38, 24, 84, 96, 104, 106, 54, 168, 210, 228, 222, 214, 12, 70, 76, 124, 74, 32, 62, 68, 112, 160, 8, 174, 234, 148, 152, 4, 26, 196, 116, 140, 28, 30, 18, 56, 180, 6, 166, 16, 80, 50, 226, 92, 150, 170, 136, 86, 188, 208, 138, 90, 158, 36, 218, 202, 46, 130, 178, 200, 146, 238, 204, 94, 10, 216, 100, 156, 192, 126, 190, 224, 212, 82, 60, 2, 98, 102]) In [29]: np.all(bases ** i == x) Out[29]: np.True_
In [30]: x = GF.Random(low=1); x Out[30]: GF(α^3 + 1, order=3^5) In [31]: bases = GF.primitive_elements In [32]: i = x.log(bases); i Out[32]: array([207, 3, 235, 43, 217, 65, 95, 153, 183, 181, 57, 69, 1, 159, 25, 103, 177, 29, 37, 83, 147, 237, 193, 51, 61, 91, 21, 213, 157, 219, 117, 13, 141, 19, 127, 197, 163, 215, 73, 133, 15, 241, 85, 119, 191, 5, 161, 199, 109, 227, 39, 195, 129, 167, 87, 47, 155, 97, 201, 225, 71, 135, 233, 131, 123, 175, 105, 125, 203, 35, 81, 53, 23, 211, 189, 93, 149, 185, 27, 179, 169, 205, 79, 41, 115, 89, 223, 49, 107, 113, 151, 239, 45, 17, 101, 145, 139, 171, 59, 63, 31, 9, 221, 137, 67, 75, 229, 173, 7, 111]) In [33]: np.all(bases ** i == x) Out[33]: np.True_
In [34]: x = GF.Random(low=1); x Out[34]: GF(α^201, order=3^5) In [35]: bases = GF.primitive_elements In [36]: i = x.log(bases); i Out[36]: array([201, 45, 137, 161, 109, 7, 215, 117, 83, 53, 129, 67, 15, 207, 133, 93, 235, 193, 71, 35, 27, 167, 233, 39, 189, 155, 73, 49, 177, 139, 61, 195, 179, 43, 211, 51, 25, 79, 127, 59, 225, 227, 65, 91, 203, 75, 237, 81, 183, 17, 101, 21, 241, 85, 95, 221, 147, 3, 111, 229, 97, 89, 107, 29, 151, 205, 123, 181, 141, 41, 5, 69, 103, 19, 173, 185, 57, 113, 163, 23, 115, 171, 217, 131, 31, 125, 199, 9, 153, 1, 87, 197, 191, 13, 63, 239, 149, 145, 159, 219, 223, 135, 169, 119, 37, 157, 47, 175, 105, 213]) In [37]: np.all(bases ** i == x) Out[37]: np.True_