-
galois.FieldArray.log(base: ElementLike | ArrayLike | None =
None
) int | ndarray Computes the discrete logarithm of the array \(x\) base \(\beta\).
- Parameters:¶
- base: ElementLike | ArrayLike | None =
None
¶ A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is
None
which usesprimitive_element
.Slower performance
If the
FieldArray
is configured to use lookup tables (ufunc_mode == "jit-lookup"
) and this method is invoked with a base different fromprimitive_element
, then explicit calculation will be used (which is slower than using lookup tables).
- base: ElementLike | ArrayLike | None =
- Returns:¶
An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.
Examples¶
Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.
In [1]: GF = galois.GF(3**5) In [2]: alpha = GF.primitive_element; alpha Out[2]: GF(3, order=3^5) In [3]: x = GF.Random(10, low=1); x Out[3]: GF([ 29, 197, 24, 14, 4, 179, 104, 84, 214, 130], order=3^5) In [4]: i = x.log(); i Out[4]: array([ 15, 180, 191, 209, 69, 60, 232, 208, 153, 56]) In [5]: np.array_equal(alpha ** i, x) Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly") In [7]: alpha = GF.primitive_element; alpha Out[7]: GF(α, order=3^5) In [8]: x = GF.Random(10, low=1); x Out[8]: GF([ 2α^4 + α^2 + 2α + 1, 2α^4 + 2α^2 + α, 2α^3 + 2α^2 + 2α + 1, 2α^4 + α^3 + α^2 + α + 2, 2α^2 + 2α + 1, 2α^4 + α^3 + 2α^2 + 2, 2α^4 + α^3 + 2α^2, 2α^4 + 2α^3 + α^2 + α + 2, α^4 + α^3 + 2α^2 + 1, α^2], order=3^5) In [9]: i = x.log(); i Out[9]: array([111, 171, 95, 63, 88, 58, 19, 81, 25, 2]) In [10]: np.array_equal(alpha ** i, x) Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power") In [12]: alpha = GF.primitive_element; alpha Out[12]: GF(α, order=3^5) In [13]: x = GF.Random(10, low=1); x Out[13]: GF([α^162, α^40, α^130, α^150, α^25, α^23, α^130, α^115, α^11, α^174], order=3^5) In [14]: i = x.log(); i Out[14]: array([162, 40, 130, 150, 25, 23, 130, 115, 11, 174]) In [15]: np.array_equal(alpha ** i, x) Out[15]: True
With the default argument,
numpy.log()
andlog()
are equivalent.In [16]: np.array_equal(np.log(x), x.log()) Out[16]: True
Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.
In [17]: beta = GF.primitive_elements[-1]; beta Out[17]: GF(242, order=3^5) In [18]: i = x.log(beta); i Out[18]: array([150, 46, 210, 112, 59, 93, 210, 223, 55, 188]) In [19]: np.array_equal(beta ** i, x) Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5) In [21]: i = x.log(beta); i Out[21]: array([150, 46, 210, 112, 59, 93, 210, 223, 55, 188]) In [22]: np.array_equal(beta ** i, x) Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta Out[23]: GF(α^185, order=3^5) In [24]: i = x.log(beta); i Out[24]: array([150, 46, 210, 112, 59, 93, 210, 223, 55, 188]) In [25]: np.array_equal(beta ** i, x) Out[25]: True
Compute the logarithm of a single finite field element base all of the primitive elements of the field.
In [26]: x = GF.Random(low=1); x Out[26]: GF(9, order=3^5) In [27]: bases = GF.primitive_elements In [28]: i = x.log(bases); i Out[28]: array([ 2, 228, 194, 122, 36, 100, 202, 12, 114, 204, 218, 162, 76, 226, 206, 84, 142, 26, 150, 16, 40, 104, 148, 4, 38, 140, 144, 216, 74, 188, 180, 20, 68, 234, 214, 210, 46, 126, 224, 186, 172, 166, 168, 90, 238, 138, 136, 120, 56, 70, 60, 58, 124, 108, 78, 184, 164, 112, 30, 160, 72, 96, 42, 34, 152, 232, 236, 62, 182, 240, 106, 156, 54, 64, 86, 50, 192, 24, 116, 52, 18, 92, 196, 212, 28, 230, 8, 94, 146, 118, 102, 14, 32, 82, 174, 130, 158, 170, 128, 190, 178, 200, 98, 6, 10, 134, 222, 80, 48, 208]) In [29]: np.all(bases ** i == x) Out[29]: True
In [30]: x = GF.Random(low=1); x Out[30]: GF(2α^4 + 2α^3 + 2α^2 + α + 2, order=3^5) In [31]: bases = GF.primitive_elements In [32]: i = x.log(bases); i Out[32]: array([162, 76, 226, 202, 12, 114, 148, 4, 38, 68, 234, 54, 106, 156, 230, 28, 128, 170, 50, 86, 94, 196, 130, 82, 174, 208, 48, 72, 186, 224, 60, 168, 184, 78, 152, 70, 96, 42, 236, 62, 138, 136, 56, 30, 160, 46, 126, 40, 180, 104, 20, 100, 122, 36, 26, 142, 216, 118, 10, 134, 24, 32, 14, 92, 212, 158, 240, 182, 222, 80, 116, 52, 18, 102, 190, 178, 64, 8, 200, 98, 6, 192, 146, 232, 90, 238, 164, 112, 210, 120, 34, 166, 172, 108, 58, 124, 214, 218, 204, 144, 140, 228, 194, 2, 84, 206, 74, 188, 16, 150]) In [33]: np.all(bases ** i == x) Out[33]: True
In [34]: x = GF.Random(low=1); x Out[34]: GF(α^34, order=3^5) In [35]: bases = GF.primitive_elements In [36]: i = x.log(bases); i Out[36]: array([ 34, 4, 152, 138, 128, 6, 46, 204, 2, 80, 76, 92, 82, 212, 114, 218, 236, 200, 130, 30, 196, 74, 96, 68, 162, 202, 28, 42, 48, 50, 156, 98, 188, 106, 8, 182, 56, 206, 178, 16, 20, 160, 194, 78, 174, 168, 134, 104, 226, 222, 52, 18, 172, 142, 116, 224, 126, 210, 26, 58, 14, 180, 230, 94, 164, 72, 140, 86, 190, 208, 108, 232, 192, 120, 10, 124, 118, 166, 36, 158, 64, 112, 186, 216, 234, 38, 136, 146, 62, 70, 40, 238, 60, 184, 54, 32, 24, 228, 240, 84, 122, 12, 214, 102, 170, 100, 144, 150, 90, 148]) In [37]: np.all(bases ** i == x) Out[37]: True