galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the discrete logarithm of the array \(x\) base \(\beta\).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Slower performance

If the FieldArray is configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than using lookup tables).

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([  6, 183, 144,  52, 230, 149,  70, 104,  79, 159], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([122, 171, 140,  79,  81,  32, 172, 232,  95, 161])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([      α^3 + 2α^2 + 2α + 2,    2α^4 + 2α^3 + 2α^2 + α,
          2α^4 + α^3 + 2α + 2,       α^4 + α^3 + α^2 + 1,
               2α^4 + α^2 + 1,            α^4 + 2α^2 + 2,
    2α^4 + α^3 + 2α^2 + α + 2,        α^3 + 2α^2 + α + 2,
                    α^4 + α^3,       2α^3 + 2α^2 + α + 1], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([160,  96, 180,  83, 206,  85,  53,  51,  72,  22])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^220,  α^94,  α^30, α^216, α^220, α^127, α^137, α^181, α^207, α^166],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([220,  94,  30, 216, 220, 127, 137, 181, 207, 166])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([132,  96, 216, 200, 132,  19,  91,  69, 111,  82])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([132,  96, 216, 200, 132,  19,  91,  69, 111,  82])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([132,  96, 216, 200, 132,  19,  91,  69, 111,  82])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(146, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([219, 161, 189,  49, 191, 181,  97, 225, 141, 195, 155,  73, 215,
        63,  51, 123,  61, 185, 211, 179, 145, 135, 113,  75,  47, 205,
       159,  57, 117, 137, 229, 133,  65, 213, 201,   5, 197,   3, 207,
        39,  79,  27, 125, 175, 167, 107,   9, 193, 203, 163, 157,  59,
       147,  89,  71, 183, 171,  43, 139, 217,  19, 227,   1,  93,  67,
       115,  69,  13,  85,  23, 233,  21, 105, 111, 221, 151,  91,  87,
       239,   7,  35,  31,  45, 103,  41,  17,  29, 129,  15,  95,  37,
        81, 237,  25, 177, 199, 119, 223, 101, 235, 131, 241,  83, 173,
       127, 153, 109, 169,  53, 149])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(2α^4 + α^3 + 2α^2 + 2α, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([183, 171,  85,  31,  27,  75,  91,   9,  25, 153, 103,  61,  57,
       109, 215,  63, 167, 201, 173, 133, 151, 199, 111,   3,  89, 105,
       229,  41, 237, 141, 135,  15,  51, 115, 221,  97,  95, 155,  47,
        79, 129, 185,   5,   7, 239,  43, 223, 211, 163, 113,  45, 225,
        93,  81, 119,  17, 123, 205,  83, 241, 175, 193, 213, 207, 235,
        53, 177, 107, 197,  59,  19, 117, 101, 169, 125, 219,  23, 139,
        87,  39, 195,  69, 147, 159,  21, 233, 127, 131,  49, 149, 137,
        71, 145,   1, 191,  37, 179,  67, 217, 203,  73,  29,  13,  65,
       189, 161, 227, 181, 157,  35])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^140, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([140, 230,  28,  70, 100, 224, 104, 114, 236,   2,  14, 208, 238,
        90, 142,  72,  18, 126,  94, 152, 138,  20, 196,  38, 240, 120,
       158, 116,  98,  92,  16, 190, 162, 166, 218, 180,  74, 108, 192,
       194, 182,   4, 144,   8, 204, 222,  82, 172,  48,  60,  86, 188,
       210,  58, 136,  54, 106,  96, 164,  68, 200, 186,  36, 202, 234,
        26,  64, 226, 156, 102, 160,  30, 150, 124, 212, 112, 130, 228,
       134,  10,  50, 148, 168,  78,  24, 128,  76,  46,  56,  32, 122,
        12,  62, 174,  80, 146, 170,  42,   6, 232, 118, 206,  84, 178,
       216, 184,  52,  34, 214,  40])

In [37]: np.all(bases ** i == x)
Out[37]: True