- galois.is_prime(n: int) bool
Determines if \(n\) is prime.
See also
Notes
This algorithm will first run Fermat’s primality test to check \(n\) for compositeness, see
fermat_primality_test(). If it determines \(n\) is composite, the function will quickly return.If Fermat’s primality test returns
True, then \(n\) could be prime or pseudoprime. If so, then the algorithm will run 10 rounds of Miller-Rabin’s primality test, seemiller_rabin_primality_test(). With this many rounds, a result ofTrueshould have high probability of \(n\) being a true prime, not a pseudoprime.Examples
In [1]: galois.is_prime(13) Out[1]: True In [2]: galois.is_prime(15) Out[2]: FalseThe algorithm is also efficient on very large \(n\).
In [3]: galois.is_prime(1000000000000000035000061) Out[3]: True