galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the discrete logarithm of the array \(x\) base \(\beta\).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Slower performance

If the FieldArray is configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than using lookup tables).

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([ 69, 186,  98, 134,  91, 239, 117,  67,  55,  12], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([ 18,  94,  35,  42, 148, 162,  12,  39, 136,  70])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([     2α^3 + 2α^2 + 2α + 2, α^4 + 2α^3 + α^2 + 2α + 1,
          2α^4 + 2α^3 + α + 2,        α^4 + 2α^3 + α + 2,
    2α^4 + α^3 + 2α^2 + α + 1,                   α^3 + 1,
                  2α^3 + 2α^2,     α^4 + 2α^3 + α^2 + 2α,
                       2α + 2,       α^4 + 2α^2 + 2α + 2], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([236, 174, 225, 212, 178, 207, 192,  52, 190, 105])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^193, α^165, α^238,  α^30, α^151, α^130, α^120,  α^38,  α^34, α^213],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([193, 165, 238,  30, 151, 130, 120,  38,  34, 213])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([107,  99,  68, 216,  95, 210, 138,  80, 148,   9])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([107,  99,  68, 216,  95, 210, 138,  80, 148,   9])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([107,  99,  68, 216,  95, 210, 138,  80, 148,   9])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(210, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([173, 241,  83, 147,  89,  59,  49, 191, 181, 101, 223, 219, 161,
       189, 153, 127, 183,  71, 149,  53, 193, 163,  97, 225, 141, 131,
       235, 171, 109, 169, 203, 157, 195, 155, 119,  15, 107,   9, 137,
       117, 237,  81, 133,  41,  17,  79,  27,  95, 125,   5, 229, 177,
       199,  25, 213,  65,  29, 129, 175, 167,  57, 197,   3,  37, 201,
       103, 207,  39,  13,  69, 215,  63,  73,  91, 179, 211,  31,  19,
       233,  21, 105,  93, 135,  67, 123,  51,  87, 145,  45,  43, 111,
         1, 227,  75,  47, 113, 115, 185,  61, 221, 151, 239,   7,  35,
       139, 217,  85,  23, 159, 205])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(2α^4 + α^2 + 2, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([213, 203,  91, 167,  83, 123, 217, 189,  41,  67, 227,  71, 229,
       111, 159, 113, 119, 107,   3, 131,  25,  65, 153,  63, 175,  27,
       211, 135, 137,  57, 173,  73, 103, 237,  43, 101,  59, 109,  19,
       207,  47,  13, 105, 147, 179, 177,  85,  75,  35, 195, 219, 127,
        17,   7,  79, 115, 163, 191,  49, 221,  45, 181, 117, 233,  95,
       145,  87,  69,  23,  29, 157,  37, 185, 161, 205,   1, 241,  15,
       133,  93, 223, 239, 183, 193, 199,  53,   5,  89,  61, 225, 215,
        39, 141,  21, 139,  51, 129, 197, 201, 149,  81, 125,  31, 155,
        97, 235, 169, 171, 151,   9])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^123, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([123, 107,  73,   1, 157, 221,  81, 133, 235,  83,  97,  41, 197,
       105,  85, 205,  21, 147,  29, 137, 161, 225,  27, 125, 159,  19,
        23,  95, 195,  67,  59, 141, 189, 113,  93,  89, 167,   5, 103,
        65,  51,  45,  47, 211, 117,  17,  15, 241, 177, 191, 181, 179,
         3, 229, 199,  63,  43, 233, 151,  39, 193, 217, 163, 155,  31,
       111, 115, 183,  61, 119, 227,  35, 175, 185, 207, 171,  71, 145,
       237, 173, 139, 213,  75,  91, 149, 109, 129, 215,  25, 239, 223,
       135, 153, 203,  53,   9,  37,  49,   7,  69,  57,  79, 219, 127,
       131,  13, 101, 201, 169,  87])

In [37]: np.all(bases ** i == x)
Out[37]: True