-
galois.FieldArray.log(base: ElementLike | ArrayLike | None =
None
) int | ndarray Computes the discrete logarithm of the array \(x\) base \(\beta\).
- Parameters:¶
- base: ElementLike | ArrayLike | None =
None
¶ A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is
None
which usesprimitive_element
.Slower performance
If the
FieldArray
is configured to use lookup tables (ufunc_mode == "jit-lookup"
) and this method is invoked with a base different fromprimitive_element
, then explicit calculation will be used (which is slower than using lookup tables).
- base: ElementLike | ArrayLike | None =
- Returns:¶
An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.
Examples
Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.
In [1]: GF = galois.GF(3**5) In [2]: alpha = GF.primitive_element; alpha Out[2]: GF(3, order=3^5) In [3]: x = GF.Random(10, low=1); x Out[3]: GF([ 54, 162, 181, 21, 179, 97, 130, 211, 237, 221], order=3^5) In [4]: i = x.log(); i Out[4]: array([124, 125, 135, 127, 60, 159, 56, 178, 96, 225]) In [5]: np.array_equal(alpha ** i, x) Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly") In [7]: alpha = GF.primitive_element; alpha Out[7]: GF(α, order=3^5) In [8]: x = GF.Random(10, low=1); x Out[8]: GF([ α^4 + α^3 + 2, α^3 + α, α^3 + α^2 + α + 2, 2α^4 + α^3 + α^2 + 1, 2α^4 + 2α^2 + 2α + 2, 2α^4 + 2α^3, 2α^4 + 2α^3 + α^2 + 2α, 2α^4 + 2α^2 + α, 2α^4 + α^3 + 2α^2 + α + 1, 2α^3 + α^2 + α + 1], order=3^5) In [9]: i = x.log(); i Out[9]: array([119, 47, 216, 164, 21, 193, 152, 171, 178, 39]) In [10]: np.array_equal(alpha ** i, x) Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power") In [12]: alpha = GF.primitive_element; alpha Out[12]: GF(α, order=3^5) In [13]: x = GF.Random(10, low=1); x Out[13]: GF([ α^91, α^47, α^16, α^181, α^58, α^223, α^169, α^8, α^161, α^73], order=3^5) In [14]: i = x.log(); i Out[14]: array([ 91, 47, 16, 181, 58, 223, 169, 8, 161, 73]) In [15]: np.array_equal(alpha ** i, x) Out[15]: True
With the default argument,
numpy.log()
andlog()
are equivalent.In [16]: np.array_equal(np.log(x), x.log()) Out[16]: True
Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.
In [17]: beta = GF.primitive_elements[-1]; beta Out[17]: GF(242, order=3^5) In [18]: i = x.log(beta); i Out[18]: array([147, 169, 212, 69, 224, 81, 31, 106, 167, 211]) In [19]: np.array_equal(beta ** i, x) Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5) In [21]: i = x.log(beta); i Out[21]: array([147, 169, 212, 69, 224, 81, 31, 106, 167, 211]) In [22]: np.array_equal(beta ** i, x) Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta Out[23]: GF(α^185, order=3^5) In [24]: i = x.log(beta); i Out[24]: array([147, 169, 212, 69, 224, 81, 31, 106, 167, 211]) In [25]: np.array_equal(beta ** i, x) Out[25]: True
Compute the logarithm of a single finite field element base all of the primitive elements of the field.
In [26]: x = GF.Random(low=1); x Out[26]: GF(3, order=3^5) In [27]: bases = GF.primitive_elements In [28]: i = x.log(bases); i Out[28]: array([ 1, 235, 97, 61, 139, 171, 101, 127, 57, 223, 109, 81, 159, 113, 103, 163, 71, 13, 75, 129, 141, 173, 195, 123, 19, 191, 193, 229, 37, 215, 211, 131, 155, 117, 107, 105, 23, 63, 233, 93, 207, 83, 205, 45, 119, 69, 189, 181, 149, 35, 151, 29, 183, 175, 39, 213, 203, 177, 15, 201, 157, 169, 21, 17, 197, 237, 239, 31, 91, 241, 53, 199, 27, 153, 43, 25, 217, 133, 179, 147, 9, 167, 219, 227, 135, 115, 125, 47, 73, 59, 51, 7, 137, 41, 87, 65, 79, 85, 185, 95, 89, 221, 49, 3, 5, 67, 111, 161, 145, 225]) In [29]: np.all(bases ** i == x) Out[29]: True
In [30]: x = GF.Random(low=1); x Out[30]: GF(α^4 + 2α^2 + 2, order=3^5) In [31]: bases = GF.primitive_elements In [32]: i = x.log(bases); i Out[32]: array([ 85, 131, 17, 103, 199, 15, 115, 147, 5, 79, 69, 109, 205, 167, 43, 61, 227, 137, 83, 75, 127, 185, 119, 49, 163, 21, 191, 105, 241, 125, 27, 3, 107, 23, 141, 213, 19, 31, 203, 161, 171, 37, 1, 195, 193, 57, 93, 139, 81, 71, 9, 45, 67, 113, 169, 197, 73, 41, 65, 145, 35, 87, 91, 235, 47, 59, 229, 215, 233, 157, 149, 217, 117, 179, 25, 189, 53, 173, 211, 153, 39, 159, 223, 177, 101, 95, 219, 123, 155, 175, 221, 111, 29, 97, 135, 201, 181, 207, 237, 89, 63, 151, 51, 13, 183, 129, 239, 133, 225, 7]) In [33]: np.all(bases ** i == x) Out[33]: True
In [34]: x = GF.Random(low=1); x Out[34]: GF(α^25, order=3^5) In [35]: bases = GF.primitive_elements In [36]: i = x.log(bases); i Out[36]: array([ 25, 67, 5, 73, 87, 161, 105, 29, 215, 9, 63, 89, 103, 163, 155, 203, 81, 83, 181, 79, 137, 211, 35, 171, 233, 177, 227, 159, 199, 51, 193, 129, 3, 21, 13, 205, 91, 123, 17, 147, 93, 139, 43, 157, 71, 31, 127, 169, 95, 149, 145, 241, 219, 19, 7, 1, 235, 69, 133, 185, 53, 111, 41, 183, 85, 117, 167, 49, 97, 217, 115, 135, 191, 195, 107, 141, 101, 179, 119, 45, 225, 61, 151, 109, 229, 213, 221, 207, 131, 23, 65, 175, 37, 57, 239, 173, 39, 189, 27, 197, 47, 201, 15, 75, 125, 223, 113, 153, 237, 59]) In [37]: np.all(bases ** i == x) Out[37]: True