galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the discrete logarithm of the array \(x\) base \(\beta\).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Slower performance

If the FieldArray is configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than using lookup tables).

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([150, 160,  28,  98, 141, 192, 226, 197,  67, 184], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([ 52, 184, 207,  35,  37, 158, 187, 180,  39, 156])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([         2α^4 + 2α^3 + α^2,          α^3 + α^2 + α + 1,
                      2α^4 + 2,                   2α^3 + α,
                     2α^2 + 2α, 2α^4 + 2α^3 + 2α^2 + α + 1,
                  2α^2 + α + 2,         α^3 + 2α^2 + α + 2,
           2α^4 + α^3 + 2α + 2,  α^4 + α^3 + 2α^2 + 2α + 1], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([ 90, 115,  68, 196, 191, 186,  17,  51, 180, 202])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^107, α^102,  α^64, α^102, α^133, α^183,  α^33,  α^38, α^129, α^130],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([107, 102,  64, 102, 133, 183,  33,  38, 129, 130])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([117, 202, 122, 202, 159,  35, 165,  80, 227, 210])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([117, 202, 122, 202, 159,  35, 165,  80, 227, 210])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([117, 202, 122, 202, 159,  35, 165,  80, 227, 210])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(149, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([ 32,  18, 200,  16,  92, 148,  86, 192, 130, 118, 100, 172,   6,
       228, 150, 134,  94, 174, 222,  14, 156, 212, 190,  64, 124,  62,
       126,  68, 216, 104, 218,  78, 120, 114,  36, 214,  10,  80, 196,
        72,  90, 236,  26, 230, 178,  30, 240, 226, 170, 152, 234, 202,
        48,  34,  38,  40, 204,  98, 238, 140, 184,  84, 188,  60,  12,
        82, 146,  24,   8, 210,   2,  76, 138,  56, 166,  74, 168, 142,
       162, 106,  46,  20, 232,   4, 206,  50, 128,  52, 158, 194, 180,
       224,  28, 102, 122, 144, 108,  58, 112, 136, 186,  54, 116,  96,
       160, 208, 164,  70,  42, 182])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(2α^4 + α + 1, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([ 45, 169,   9,  83, 205, 193, 189, 149, 145, 113,  65,  15, 137,
         3,  37,  75,  49, 101, 229, 239,  53,  41,  63, 211, 129, 125,
       215, 141, 213, 237,  57,  87, 199, 183, 217, 127,  67, 173,  79,
        71, 119, 105,  29,  89,  31, 201,  35, 159, 171, 123,  19,  95,
         7, 131,  61, 147, 181, 221, 191,  91,  47, 103, 219,  39, 153,
        17, 107, 185, 223, 197, 207,   1,   5, 109, 241, 157,  85, 177,
        69,  81, 163,  13, 175,  51,  25,  93,  59, 179, 139, 235, 117,
        73, 115, 151,  43,  21, 167, 195,  97, 161, 133,  23,  27, 135,
       225, 111, 155, 227, 233, 203])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^102, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([102,  12, 214, 172, 142,  18, 138, 128,   6, 240, 228,  34,   4,
       152, 100, 170, 224, 116, 148,  90, 104, 222,  46, 204,   2, 122,
        84, 126, 144, 150, 226,  52,  80,  76,  24,  62, 168, 134,  50,
        48,  60, 238,  98, 234,  38,  20, 160,  70, 194, 182, 156,  54,
        32, 184, 106, 188, 136, 146,  78, 174,  42,  56, 206,  40,   8,
       216, 178,  16,  86, 140,  82, 212,  92, 118,  30, 130, 112,  14,
       108, 232, 192,  94,  74, 164, 218, 114, 166, 196, 186, 210, 120,
       230, 180,  68, 162,  96,  72, 200, 236,  10, 124,  36, 158,  64,
        26,  58, 190, 208,  28, 202])

In [37]: np.all(bases ** i == x)
Out[37]: True