property galois.BCH.alpha : FieldArray

A primitive n-th root of unity α in GF(qm) whose consecutive powers αc,,αc+d2 are roots of the generator polynomial g(x) in GF(qm).

Examples

Construct a binary primitive BCH(15,7) code.

In [1]: bch = galois.BCH(15, 7); bch
Out[1]: <BCH Code: [15, 7, 5] over GF(2)>

In [2]: bch.alpha
Out[2]: GF(2, order=2^4)

In [3]: bch.roots[0] == bch.alpha ** bch.c
Out[3]: True

In [4]: bch.alpha.multiplicative_order() == bch.n
Out[4]: True

Construct a non-primitive BCH(13,7) code over GF(3).

In [5]: bch = galois.BCH(13, 7, field=galois.GF(3)); bch
Out[5]: <BCH Code: [13, 7, 4] over GF(3)>

In [6]: bch.alpha
Out[6]: GF(9, order=3^3)

In [7]: bch.roots[0] == bch.alpha ** bch.c
Out[7]: True

In [8]: bch.alpha.multiplicative_order() == bch.n
Out[8]: True